Optimizing position readout circuits in positron emission tomography front-end electronics

被引:10
|
作者
Zhang, N [1 ]
Thompson, CJ
机构
[1] CPS Innovat, Knoxville, TN 37932 USA
[2] McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2B4, Canada
[3] McGill Univ, Montreal Neurol Inst, Montreal, PQ H3A 2B4, Canada
关键词
energy nonuniformity; position readout circuit; position-sensitive photomultiplier tube (PS-PMT); positron emission tomography (PET);
D O I
10.1109/TNS.2003.817954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most of the front-end position readout circuits in positron emission tomography (PET) detectors originate from the Anger logic design. In PET detectors with position-sensitive photomultiplier tubes (PS-PMTs) and multi-channel photomultiplier tubes (MC-PMTs), anode position readout circuits are more complex due to multi-anode outputs from a single PMT. To simplify the circuits, many researches have investigated different schemes by combining multiple PMTs with simplified X-, X+, Y-, Y+ outputs. In this paper, we aim at optimizing the performance of the position readout electronic circuits. First, we compared the signal-to-noise ratios (SNRs) in different position readout schemes. Then we examined the truncation and roundoff errors in the irradiation-image processes by applying the root-sum-square (RSS) analysis and the uniform distribution simulation methods. Furthermore, we investigated the gain adjustment and balance issues in the X-, X+, Y-, Y+ analog signal channels. We demonstrated that an eight-bit analog to digital converter (ADC) is probably insufficient in the position recording if a gamma-ray event position is calculated from digitized X-, X+, Y-, Y+ signals. We also revealed that an energy nonuniformity error could be occurred if the signal gains in the front-end analog circuits are improperly adjusted. As a result, the quantitative gain adjustment criteria are given to optimize the PET position readout circuits.
引用
收藏
页码:1398 / 1403
页数:6
相关论文
共 50 条
  • [21] Front-end electronics for the Scalable Readout System ofRD51
    Martoiu, S.
    Muller, H.
    Toledo, J.
    [J]. 2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 2036 - 2038
  • [22] Thermal influences of the front-end electronics on the Alice TPC readout chamber
    Popescu, S
    Frankenfeld, U
    Schmidt, HR
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (06) : 2879 - 2888
  • [23] Design of the Front-End Readout Electronics for ATLAS Tile Calorimeter at the sLHC
    Tang, F.
    Anderson, K.
    Drake, G.
    Genat, J. -F.
    Oreglia, M.
    Pilcher, J.
    Price, L.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (02) : 1255 - 1259
  • [24] A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout
    Ye, Jingbo
    [J]. XIV INTERNATIONAL CONFERENCE ON CALORIMETRY IN HIGH ENERGY PHYSICS (CALOR 2010), 2011, 293
  • [25] Irradiation tests of the pixel front-end readout electronics for the ALICE experiment at LHC
    Badalà, A
    Barbera, R
    Lo Re, G
    Palmeri, A
    Pappalardo, GS
    Riggi, F
    Di Liberto, S
    Meddi, F
    Cavagnoli, A
    Morando, M
    Scarlassara, F
    Segato, G
    Soramel, F
    Vannucci, L
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 476 (03): : 765 - 769
  • [26] LHC front-end electronics
    Hall, G
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 453 (1-2): : 353 - 364
  • [27] The front-end readout electronics for the PANDA Focussing-Lightguide Disc DIRC
    Cowie, E.
    Foehl, K.
    Glazier, D.
    Hill, G.
    Hoek, M.
    Kaiser, R.
    Keri, T.
    Murray, M.
    Rosner, G.
    Seitz, B.
    [J]. JOURNAL OF INSTRUMENTATION, 2009, 4
  • [28] Front-end readout electronics system of ProtoDUNE-SP LAr TPC
    Hans-Gerd Berns
    Hucheng Chen
    Alessio D’Andragora
    Jack Fried
    Daniel Gastler
    S. Gao
    Eric Hazen
    Wenbin Hou
    Shaorui Li
    Feng Liu
    Veljko Radeka
    Maura Spanu
    Emerson Vernon
    Elizabeth Worcester
    Matthew Worcester
    Krithika Yethiraj
    Bo Yu
    Junbin Zhang
    [J]. Radiation Detection Technology and Methods, 2019, 3
  • [29] Front-end readout electronics considerations for Silicon Tracking System and Muon Chamber
    Kasinski, K.
    Kleczek, R.
    Szczygiel, R.
    [J]. JOURNAL OF INSTRUMENTATION, 2016, 11
  • [30] Comparative analysis of the readout front-end electronics implemented in deep submicron technologies
    Kleczek, R.
    Kmon, P.
    [J]. JOURNAL OF INSTRUMENTATION, 2018, 13