Equivalent methods for global optimization

被引:0
|
作者
MacLagan, D
Sturge, T
Baritompa, W
机构
关键词
global optimization; deterministic; algorithms; optimality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The envelope used by the algorithm of Breiman and Cutler [4] can be smoothed to create a better algorithm. This is equivalent to an accelerated algorithm developed by the third author and Cutler in [3] which uses apparently poor envelopes. Explaining this anomaly lead to a general result concerning the equivalence of methods which use information from more than one point at each stage and those that only use the most recent evaluated point. Smoothing is appropriate for many algorithms, and we show it is an optimal strategy.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [21] A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries
    Lai, Xin
    Gao, Wenkai
    Zheng, Yuejiu
    Ouyang, Minggao
    Li, Jianqiu
    Han, Xuebing
    Zhou, Long
    ELECTROCHIMICA ACTA, 2019, 295 : 1057 - 1066
  • [22] Size optimization methods to approximate equivalent mechanical behaviour in thermoplastics
    Althammer, Florian
    Ruf, Florian
    Middendorf, Peter
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2021, 8 (01) : 170 - 188
  • [23] STOCHASTIC GLOBAL OPTIMIZATION METHODS .1. CLUSTERING METHODS
    KAN, AHGR
    TIMMER, GT
    MATHEMATICAL PROGRAMMING, 1987, 39 (01) : 27 - 56
  • [24] New interval methods for constrained global optimization
    Markót, MC
    Fernández, J
    Casado, LG
    Csendes, T
    MATHEMATICAL PROGRAMMING, 2006, 106 (02) : 287 - 318
  • [25] Image Thresholding Improved by Global Optimization Methods
    Balabanian, Felipe
    Sant'Ana da Silva, Eduardo
    Pedrini, Helio
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (03) : 197 - 208
  • [26] Revised filled function methods for global optimization
    Han, QM
    Han, JY
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 119 (2-3) : 217 - 228
  • [27] Initialization Methods for Large Scale Global Optimization
    Kazimipour, Borhan
    Li, Xiaodong
    Qin, A. K.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2750 - 2757
  • [28] A NOTE ON STOCHASTIC SEARCH METHODS FOR GLOBAL OPTIMIZATION
    KENNEDY, DP
    ADVANCES IN APPLIED PROBABILITY, 1988, 20 (02) : 476 - 478
  • [29] GLOBAL OPTIMIZATION METHODS FOR MULTIMODAL INVERSE PROBLEMS
    SCALES, JA
    SMITH, ML
    FISCHER, TL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (02) : 258 - 268
  • [30] Global interval methods for local nonsmooth optimization
    Görges, C
    Ratschek, H
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 157 - 179