Complete integral closure and strongly divisorial prime ideals

被引:4
|
作者
Barucci, V
Gabelli, S
Roitman, M
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Roma Tre, Dipartimento Matemat, Rome, Italy
[3] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
关键词
complete integral closure; divisorial ideal;
D O I
10.1081/AGB-120023967
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that a domain without proper strongly divisorial ideals is completely integrally closed. In this paper we show that a domain without prime strongly divisorial ideals is not necessarily completely integrally closed, although this property holds under some additional assumptions.
引用
收藏
页码:5447 / 5465
页数:19
相关论文
共 50 条
  • [21] On Rings Whose Strongly Prime Ideals Are Completely Prime
    Huh, Chan
    Lee, Chang Ik
    Lee, Yang
    ALGEBRA COLLOQUIUM, 2010, 17 (02) : 283 - 294
  • [22] Uniformly Strongly Prime Fuzzy Ideals
    Bergamaschi, Flaulles B.
    Santiago, Regivan H. N.
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2527 - 2532
  • [23] ON ONE SIDED STRONGLY PRIME IDEALS
    Kuzucuoglu, Feride
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 577 - 582
  • [24] Some Generalizations of Strongly Prime Ideals
    Ansari-Toroghy, H.
    Farshadifar, F.
    Maleki-Roudposhti, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [25] Derivations and the integral closure of ideals
    Hübl, R
    Swanson, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) : 3503 - 3511
  • [26] Sums of Strongly z-Ideals and Prime Ideals in RL
    Estaji, A. A.
    Feizabadi, A. Karimi
    Sarpoushi, M. Robat
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (01): : 23 - 34
  • [27] Multiplicative sets, left strongly prime ideals, and left strongly prime radicals in rings
    Kaucikas, A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (04) : 397 - 400
  • [28] Strongly prime ideals and strongly zero-dimensional rings
    Gottlieb, Christian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [29] Multiplicative sets, left strongly prime ideals, and left strongly prime radicals in rings
    A. Kaučikas
    Lithuanian Mathematical Journal, 2008, 48 : 397 - 400
  • [30] A GENERALIZATION OF PRIMARY IDEALS AND STRONGLY PRIME SUBMODULES
    Jafari, Afroozeh
    Baziar, Mohammad
    Safaeeyan, Saeed
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (02): : 423 - 432