Generalized discrete autoregressive moving-average models

被引:10
|
作者
Moeller, Tobias A. [1 ]
Weiss, Christian H. [1 ]
机构
[1] Helmut Schmidt Univ, Dept Math & Stat, Hamburg, Germany
关键词
ARMA model; compositional data; integer data; multivariate time series; ARMA MODEL;
D O I
10.1002/asmb.2520
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article proposes the generalized discrete autoregressive moving-average (GDARMA) model as a parsimonious and universally applicable approach for stationary univariate or multivariate time series. The GDARMA model can be applied to any type of quantitative time series. It allows to compute moment properties in a unique way, and it exhibits the autocorrelation structure of the traditional ARMA model. This great flexibility is obtained by using data-specific variation operators, which is illustrated for the most common types of time series data, such as counts, integers, reals, and compositional data. The practical potential of the GDARMA approach is demonstrated by considering a time series of integers regarding votes for a change of the interest rate, and a time series of compositional data regarding television market shares.
引用
收藏
页码:641 / 659
页数:19
相关论文
共 50 条
  • [41] Multivariate continuous-time autoregressive moving-average processes on cones
    Benth, Fred Espen
    Karbach, Sven
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 162 : 299 - 337
  • [42] ESTIMATING ORDERS OF AN AUTOREGRESSIVE MOVING-AVERAGE PROCESS WITH UNCERTAIN OBSERVATIONS - REPLY
    CHOW, JC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (06) : 691 - 691
  • [43] ESTIMATING ORDERS OF AN AUTOREGRESSIVE MOVING-AVERAGE PROCESS WITH UNCERTAIN OBSERVATIONS - COMMENT
    LINDBERGER, NA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (06) : 689 - 691
  • [44] Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes
    Ko, Kyungduk
    Vannucci, Maxina
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (10) : 3415 - 3434
  • [45] Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    [J]. TEST, 2009, 18 : 529 - 545
  • [46] Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach
    Zheng, Xiaobing
    Liang, Kun
    Xia, Qiang
    Zhang, Dabin
    [J]. COMPUTATIONAL ECONOMICS, 2022, 59 (03) : 1175 - 1201
  • [47] Beta autoregressive moving average models
    Rocha, Andrea V.
    Cribari-Neto, Francisco
    [J]. TEST, 2009, 18 (03) : 529 - 545
  • [48] Universal-dephasing-noise injection via Schrodinger-wave autoregressive moving-average models
    Murphy, Andrew
    Epstein, Jacob
    Quiroz, Gregory
    Schultz, Kevin
    Tewala, Lina
    McElroy, Kyle
    Trout, Colin
    Tien-Street, Brian
    Hoffmann, Joan A.
    Clader, B. D.
    Long, Junling
    Pappas, David P.
    Sweeney, Timothy M.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [49] Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach
    Xiaobing Zheng
    Kun Liang
    Qiang Xia
    Dabin Zhang
    [J]. Computational Economics, 2022, 59 : 1175 - 1201
  • [50] CUMULANT BASED IDENTIFICATION OF MULTICHANNEL MOVING-AVERAGE MODELS
    GIANNAKIS, GB
    INOUYE, Y
    MENDEL, JM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (07) : 783 - 787