Complete families of indecomposable non-simple abelian varieties

被引:0
|
作者
Flapan, Laure [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
COMPLETE CURVES; BUNDLES;
D O I
10.1007/s00208-021-02253-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a fixed product of non-isogenous abelian varieties at least one of which is general, we show how to construct complete families of indecomposable abelian varieties whose very general fiber is isogenous to the given product and whose connected monodromy group is a product of symplectic groups or is a unitary group. As a consequence, we show how to realize any product of symplectic groups of total rank g as the connected monodromy group of a complete family of g '-dimensional abelian varieties for any g ' >= g. These methods also yield a construction of a new Kodaira fibration with fiber genus 4.
引用
收藏
页码:255 / 283
页数:29
相关论文
共 50 条
  • [31] On a criterion for the non-simple groups
    Turkin, WK
    Dubuque, PE
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1938, 21 : 162 - 164
  • [32] The canonical subgroup for families of abelian varieties
    Andreatta, F.
    Gasbarri, C.
    COMPOSITIO MATHEMATICA, 2007, 143 (03) : 566 - 602
  • [33] An intersection result for families of abelian varieties
    Colombo, E
    Pirola, GP
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (02) : 111 - 122
  • [34] NON-SIMPLE TRACIAL APPROXIMATION
    Fan, Qingzhai
    Fang, Xiaochun
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1249 - 1263
  • [35] PERTURBATION BY NON-SIMPLE CONSTRAINTS
    DETTMAN, JW
    JOURNAL OF MATHEMATICS AND PHYSICS, 1964, 43 (04): : 304 - &
  • [36] NON-SIMPLE MAGNETIC ORDER FOR SIMPLE HAMILTONIANS
    RASTELLI, E
    TASSI, A
    REATTO, L
    PHYSICA B & C, 1979, 97 (01): : 1 - 24
  • [37] Non-simple localizations of finite simple groups
    Rodriguez, Jose L.
    Scherer, Jerome
    Viruel, Antonio
    JOURNAL OF ALGEBRA, 2006, 305 (02) : 765 - 774
  • [38] Simple and non-simple molecular electronic excitation
    Kasha, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U358 - U359
  • [39] Complete addition laws on abelian varieties
    Arene, Christophe
    Kohel, David
    Ritzenthaler, Christophe
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2012, 15 : 308 - 316
  • [40] SPLIT REDUCTIONS OF SIMPLE ABELIAN VARIETIES
    Achter, Jeffrey D.
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (2-3) : 199 - 213