Neural networks for classification: A survey

被引:1037
|
作者
Zhang, GQP [1 ]
机构
[1] Georgia State Univ, Coll Business, Atlanta, GA 30303 USA
关键词
Bayesian classifier; classification; ensemble methods; feature variable selection; learning and generalization; misclassification costs; neural networks;
D O I
10.1109/5326.897072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classification is one of the most active research and application areas of neural networks. The literature is vast and growing. This paper summarizes the some of the most important developments in neural network classification research. Specifically, the issues of posterior probability estimation, the link between neural and conventional classifiers, learning and generalization tradeoff in classification, the feature variable selection, as well as the effect of misclassification costs are examined. Our purpose is to provide a synthesis of the published research in this area and stimulate further research interests and efforts in the identified topics.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 50 条
  • [31] A survey of quaternion neural networks
    Parcollet, Titouan
    Morchid, Mohamed
    Linares, Georges
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (04) : 2957 - 2982
  • [32] Zeroing neural networks: A survey
    Jin, Long
    Li, Shuai
    Liao, Bolin
    Zhang, Zhijun
    NEUROCOMPUTING, 2017, 267 : 597 - 604
  • [33] A Survey on Spiking Neural Networks
    Han, Chan Sik
    Lee, Keon Myung
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2021, 21 (04) : 317 - 337
  • [34] Survey on Graph Neural Networks
    Gkarmpounis, Georgios
    Vranis, Christos
    Vretos, Nicholas
    Daras, Petros
    IEEE ACCESS, 2024, 12 : 128816 - 128832
  • [35] A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection
    Jin, Ming
    Koh, Huan Yee
    Wen, Qingsong
    Zambon, Daniele
    Alippi, Cesare
    Webb, Geoffrey I.
    King, Irwin
    Pan, Shirui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10466 - 10485
  • [36] The miniJPAS survey quasar selection III. Classification with artificial neural networks and hybridisation
    Martinez-Solaeche, G.
    Queiroz, C.
    Delgado, R. M. Gonzalez
    Rodrigues, N. V. N.
    Garcia-Benito, R.
    Perez-Rafols, I.
    Abramo, L. Raul
    Diaz-Garcia, L.
    Pieri, M. M.
    Chaves-Montero, J.
    Hernan-Caballero, A.
    Rodriguez-Martin, J. E.
    Bonoli, S.
    Morrison, S. S.
    Marquez, I.
    Vilchez, J. M.
    Fernandez-Ontiveros, J. A.
    Marra, V.
    Alcaniz, J.
    Benitez, N.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    Dupke, R. A.
    Ederoclite, A.
    Lopez-Sanjuan, C.
    Marin-Franch, A.
    de Oliveira, C. Mendes
    Moles, M.
    Sodre, L.
    Taylor, K.
    Varela, J.
    Ramio, H. Vazquez
    ASTRONOMY & ASTROPHYSICS, 2023, 673
  • [37] A new survey method using convolutional neural networks for automatic classification of bird calls
    Maegawa, Yuko
    Ushigome, Yuji
    Suzuki, Masato
    Taguchi, Karen
    Kobayashi, Keigo
    Haga, Chihiro
    Matsui, Takanori
    ECOLOGICAL INFORMATICS, 2021, 61
  • [38] Survey on Robustness Verification of Feedforward Neural Networks and Recurrent Neural Networks
    Liu Y.
    Yang P.-F.
    Zhang L.-J.
    Wu Z.-L.
    Feng Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (07): : 1 - 33
  • [39] A Survey of User Classification in Social Networks
    Bai, Gang
    Liu, Lianzhong
    Sun, Bo
    Fang, Jing
    PROCEEDINGS OF 2015 6TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE, 2015, : 1038 - 1041
  • [40] A new comparison framework to survey neural networks-based vehicle detection and classification approaches
    Hashemi, Sajjad
    Emami, Hojjat
    Babazadeh Sangar, Amin
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (14)