Phase Transition for Maximum Not-All-Equal Satisfiability

被引:0
|
作者
Zhou, Junping [1 ]
Hu, Shuli [1 ]
Zou, Tingting [2 ]
Yin, Minghao [1 ]
机构
[1] Northeast Normal Univ, Coll Comp Sci & Informat Technol, Changchun 130, Jilin, Peoples R China
[2] Dalian Maritime Univ, Coll Informat Sci & Technol, Dalian 116026, Peoples R China
来源
关键词
MAX-SAT;
D O I
10.1007/978-3-319-59605-1_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Phase transition is a dramatic transition from one state to another state when a particular parameter varies. This paper aims to study the phase transition of maximum not-all-equal satisfiability problem (Max NAE SAT), an optimization of not-all-equal satisfiability problem (NAE SAT). Given a conjunctive normal formula (CNF) F with n variables and rn k-clauses (the clause exactly contains k literals), we use first-moment method to obtain an upper bound for f (n, rn) the expectation of the maximum number of NAE-satisfied clauses of random Max NAE k-SAT. In addition, we also consider the phase transition of decision version of random Max NAE k-SAT bounded not-all-equal satisfiability problem (NAE k-SAT(b)). We demonstrate that there is a phase transition point rk,b separating the region where almost all NAE k-SAT(b) instances can be solved from the region where almost all NAE k-SAT(b) instances can't be solved. Furthermore, we analyze the upper bound and lower bound for r(k,b).
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [1] The local search approximation algorithms for maximum not-all-equal k-satisfiability problems
    Xian, Ai-Yong
    Zhu, Da-Ming
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (08): : 1561 - 1573
  • [2] Linear time algorithms for some not-all-equal satisfiability problems
    Porschen, S
    Randerath, B
    Speckenmeyer, E
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 172 - 187
  • [3] On strongly planar not-all-equal 3SAT
    Ali Dehghan
    [J]. Journal of Combinatorial Optimization, 2016, 32 : 721 - 724
  • [4] On strongly planar not-all-equal 3SAT
    Dehghan, Ali
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 721 - 724
  • [5] Better approximation algorithms for SET SPLITTING and NOT-ALL-EQUAL SAT
    Andersson, G
    Engebretsen, L
    [J]. INFORMATION PROCESSING LETTERS, 1998, 65 (06) : 305 - 311
  • [6] On a simple hard variant of NOT-ALL-EQUAL 3-Sat
    Darmann, Andreas
    Doecker, Janosch
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 815 : 147 - 152
  • [7] Satisfiability models for maximum transition power
    Roy, Suchismita
    Chakrabarti, P. P.
    Dasgupta, Pallab
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2008, 16 (08) : 941 - 951
  • [8] Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT
    Jansen, Bart M. P.
    Pieterse, Astrid
    [J]. ALGORITHMICA, 2017, 79 (01) : 3 - 28
  • [9] Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT
    Bart M. P. Jansen
    Astrid Pieterse
    [J]. Algorithmica, 2017, 79 : 3 - 28
  • [10] Not-All-Equal and 1-in-Degree Decompositions: Algorithmic Complexity and Applications
    Dehghan, Ali
    Sadeghi, Mohammad-Reza
    Ahadi, Arash
    [J]. ALGORITHMICA, 2018, 80 (12) : 3704 - 3727