Advances in Steep-Slope Tunnel FETs

被引:0
|
作者
Tomioka, Katsuhiro [1 ,2 ,3 ]
Motohisa, Junichi [1 ,2 ]
Fukui, Takashi [1 ,2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita 13,Nishi 6, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Res Ctr Integrated Quantum Elect, Kita 13,Nishi 6, Sapporo, Hokkaido 0608628, Japan
[3] JST PRESTO, Saitama, Japan
关键词
Tunneling FET; III-V compound semiconductors; nanowires; heterojunction; TRANSISTOR; VOLTAGE; GROWTH; HETEROJUNCTION; NANOWIRES; SI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tunnel FETs (TFETs) with steep subthreshold slope have been attracting much attention as building blocks for future low-power integrated circuits and CMOS technology devices. Here we report on recent advances in vertical TFETs using III-V/Si heterojunctions. These heterojunctions, which are formed by direct integration of III-V nanowires (NWs) on Si, are promising tunnel junction for achieving steep subthreshold slope (SS). The III-V/Si heterojunction inherently forms abrupt junctions regardless of precise doping technique because the band discontinuity is determined by only the offset of III-V and Si, and depletion region can be controlled by the III-V MOS structure. Thus, good gate-electrostatic control with a large internal electrical field for modulation of tunnel transport can be achieved. Here we repot on recent advances in the vertical TFETs using the III-V NW/Si heterojunction with surrounding-gate architecture and demonstrate steep-SS behavior and very low parasitic leakage current.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条
  • [31] Ambipolar steep-slope nanotransistors with Janus MoSSe/graphene heterostructures
    Zhang, Xinjiang
    Huang, Anping
    Xiao, Zhisong
    Wang, Mei
    Zhang, Jing
    Chu, Paul K.
    NANOTECHNOLOGY, 2023, 34 (01)
  • [32] Ferroelectric Nanogap-Based Steep-Slope Ambipolar Transistor
    Guan, Yaodong
    Guo, Zhe
    You, Long
    SMALL, 2022, 18 (48)
  • [33] Strained silicon based complementary tunnel-FETs: Steep slope switches for energy efficient electronics
    Knoll, L.
    Richter, S.
    Nichau, A.
    Trellenkamp, S.
    Schaefer, A.
    Wirths, S.
    Blaeser, S.
    Buca, D.
    Bourdelle, K. K.
    Zhao, Q. -T.
    Mantl, S.
    SOLID-STATE ELECTRONICS, 2014, 98 : 32 - 37
  • [34] Physical Model for the Steep Subthreshold Slope in Ferroelectric FETs
    Van Houdt, Jan
    Roussel, Philippe
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (06) : 877 - 880
  • [35] Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow
    Oldroyd, Holly J.
    Pardyjak, Eric R.
    Higgins, Chad W.
    Parlange, Marc B.
    BOUNDARY-LAYER METEOROLOGY, 2016, 161 (03) : 405 - 416
  • [36] 2D Steep-Slope Tunnel Field-Effect Transistors Tuned by van der Waals Ferroelectrics
    Chen, Xinrui
    Jiang, Tiantian
    Wang, Hanbin
    Wang, Yang
    Zhang, Miao
    Cui, Yi
    Wang, Yong
    Li, Nannan
    Du, Xinchuan
    Yan, Chaoyi
    Liu, Yuqing
    Wang, Xianfu
    ADVANCED ELECTRONIC MATERIALS, 2024,
  • [37] Stability Analysis of Concrete Block Anchor on Steep-Slope Floating Breakwater
    Sujantoko
    Armono, Haryo Dwito
    Djatmiko, Eko Budi
    Putra, Risandi Dwirama
    FLUIDS, 2022, 7 (08)
  • [38] Flow characteristics of a tangential vortex intake with steep-slope tapering section
    Chan, S. N.
    Qiao, Q. S.
    WATER SUPPLY, 2022, 22 (06) : 5818 - 5832
  • [39] Two-Dimensional Cold Electron Transport for Steep-Slope Transistors
    Liu, Maomao
    Jaiswal, Hemendra Nath
    Shahi, Simran
    Wei, Sichen
    Fu, Yu
    Chang, Chaoran
    Chakravarty, Anindita
    Liu, Xiaochi
    Yang, Cheng
    Liu, Yanpeng
    Lee, Young Hee
    Perebeinos, Vasili
    Yao, Fei
    Li, Huamin
    ACS NANO, 2021, 15 (03) : 5762 - 5772
  • [40] Design and Simulation of Steep-Slope Silicon-On-Insulator FETs using Negative Capacitance: Impact of Buried Oxide Thickness and Remnant Polarization
    Ota, Hiroyuki
    Migita, Shinji
    Hattori, Junichi
    Fukuda, Koichi
    Toriumi, Akira
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 770 - 772