Joint Spatial-Temporal Trajectory Clustering Method for Mobile Social Networks

被引:2
|
作者
Tang, Ji [1 ,2 ]
Liu, Linfeng [1 ,2 ]
Wu, Jiagao [1 ,2 ]
Zhou, Jian [2 ]
Xiang, Yang [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci & Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory clustering; spatial-temporal properties; spatial distances; semantic distances;
D O I
10.1109/ICPADS47876.2019.00123
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As an important issue in the trajectory mining task, the trajectory clustering technique has attracted lots of the attention in the field of data mining. Trajectory clustering technique identifies the similar trajectories (or trajectory segments) and classifies them into the several clusters which can reveal the potential movement behaviors of nodes. At present, most of the existing trajectory clustering methods focus on some spatial properties of trajectories (such as geographic locations, movement directions), while the spatial-temporal properties (especially the combination of spatial distances and semantic distances) are ignored, and thus some vital information regarding the movement behaviors of nodes is probably lost in the trajectory clustering results. In this paper, we propose a Joint Spatial-Temporal Trajectory Clustering Method (JSTTCM), where some spatial-temporal properties of the trajectories are exploited to cluster the trajectory segments. Finally, the number of clusters and the silhouette coefficient are observed through simulations, and the results show that JSTTCM can cluster the trajectory segments appropriately.
引用
收藏
页码:832 / 835
页数:4
相关论文
共 50 条
  • [31] Spatial-temporal grid clustering method based on frequent stay point recognition
    Zhang, Bin
    Wang, Qiuxia
    Li, Jing
    Ye, Zhou
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (12): : 9247 - 9255
  • [33] Improving Location Prediction Based on the Spatial-Temporal Trajectory
    Li, Ping
    Zhu, Xinning
    Miao, Jiansong
    BIG DATA COMPUTING AND COMMUNICATIONS, (BIGCOM 2016), 2016, 9784 : 443 - 452
  • [34] A System for Spatial-Temporal Trajectory Data Integration and Representation
    Peixoto, Douglas Alves
    Zhou, Xiaofang
    Nguyen Quoc Viet Hung
    He, Dan
    Stantic, Bela
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 807 - 812
  • [35] Hotspots Extraction Based on Spatial-Temporal Trajectory Data
    Wang K.
    Mei K.-J.
    Zhu J.-H.
    Niu X.-Z.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (06): : 925 - 930
  • [36] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (04) : 965 - 974
  • [37] SST: Synchronized Spatial-Temporal Trajectory Similarity Search
    Peng Zhao
    Weixiong Rao
    Chengxi Zhang
    Gong Su
    Qi Zhang
    GeoInformatica, 2020, 24 : 777 - 800
  • [38] A spatial-temporal attention model for human trajectory prediction
    Zhao, Xiaodong
    Chen, Yaran
    Guo, Jin
    Zhao, Dongbin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 965 - 974
  • [39] Social Content Recommendation Based on Spatial-Temporal Aware Diffusion Modeling in Social Networks
    Ullah, Farman
    Lee, Sungchang
    SYMMETRY-BASEL, 2016, 8 (09):
  • [40] Mining frequent trajectory patterns in spatial-temporal databases
    Lee, Anthony J. T.
    Chen, Yi-An
    Ip, Weng-Chong
    INFORMATION SCIENCES, 2009, 179 (13) : 2218 - 2231