SupermarQ: A Scalable Quantum Benchmark Suite

被引:23
|
作者
Tomesh, Teague [1 ,2 ]
Gokhale, Pranav [2 ]
Omole, Victory [2 ]
Ravi, Gokul Subramanian [3 ]
Smith, Kaitlin N. [3 ]
Viszlai, Joshua [3 ]
Wu, Xin-Chuan [3 ]
Hardavellas, Nikos [4 ]
Martonosi, Margaret R. [1 ]
Chong, Frederic T. [2 ,3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Supertech, Chicago, IL 60615 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[4] Northwestern Univ, Dept Comp Sci, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Quantum Computing; Benchmarking; Program Characterization; ERROR-CORRECTION; ALGORITHMS;
D O I
10.1109/HPCA53966.2022.00050
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The emergence of quantum computers as a new computational paradigm has been accompanied by speculation concerning the scope and timeline of their anticipated revolutionary changes. While quantum computing is still in its infancy, the variety of different architectures used to implement quantum computations make it difficult to reliably measure and compare performance. This problem motivates our introduction of SupermarQ, a scalable, hardware-agnostic quantum benchmark suite which uses application-level metrics to measure performance. SupermarQ is the first attempt to systematically apply techniques from classical benchmarking methodology to the quantum domain. We define a set of feature vectors to quantify coverage, select applications from a variety of domains to ensure the suite is representative of real workloads, and collect benchmark results from the IBM, IonQ, and AQT@LBNL platforms. Looking forward, we envision that quantum benchmarking will encompass a large cross-community effort built on open source, constantly evolving benchmark suites. We introduce SupermarQ as an important step in this direction.
引用
下载
收藏
页码:587 / 603
页数:17
相关论文
共 50 条
  • [31] ParVec: vectorizing the PARSEC benchmark suite
    Cebrian, Juan M.
    Jahre, Magnus
    Natvig, Lasse
    COMPUTING, 2015, 97 (11) : 1077 - 1100
  • [32] Perceptual hashing algorithms benchmark suite
    Zhang, Hui
    Martin, Schmucker
    Niu, Xiamu
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2007, 28 (04): : 603 - 608
  • [33] Oak Ridge OpenSHMEM Benchmark Suite
    Naughton, Thomas
    Aderholdt, Ferrol
    Baker, Matt
    Pophale, Swaroop
    Venkata, Manjunath Gorentla
    Imam, Neena
    OPENSHMEM AND RELATED TECHNOLOGIES: OPENSHMEM IN THE ERA OF EXTREME HETEROGENEITY, OPENSHMEM 2018, 2019, 11283 : 202 - 216
  • [34] Demystifying the MLPerf Training Benchmark Suite
    Verma, Snehil
    Wu, Qinzhe
    Hanindhito, Bagus
    Jha, Gunjan
    John, Eugene B.
    Radhakrishnan, Ramesh
    John, Lizy K.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2020, : 24 - 33
  • [35] A Suite of IEEE 1687 Benchmark Networks
    Tsertov, Anton
    Jutman, Artur
    Devadze, Sergei
    Reorda, Matteo Sonza
    Larsson, Erik
    Zadegan, Farrokh Ghani
    Cantoro, Riccardo
    Montazeri, Mehrdad
    Krenz-Baath, Rene
    PROCEEDINGS 2016 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2016,
  • [36] The ISPD Global Routing Benchmark Suite
    Nam, Gi-Joon
    Sze, Cliff
    Yildiz, Mehmet
    ISPD'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, 2008, : 156 - 159
  • [37] A Parallel Benchmark Suite for Fortran Coarrays
    Henty, David
    APPLICATIONS, TOOLS AND TECHNIQUES ON THE ROAD TO EXASCALE COMPUTING, 2012, 22 : 281 - 288
  • [38] HyperBench: A Benchmark Suite for Virtualization Capabilities
    Wei, Song
    Zhang, Kun
    Tu, Bibo
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2019, 3 (02)
  • [39] A Sparse Tensor Benchmark Suite for CPUs and GPUs
    Li, Jiajia
    Lakshminarasimhan, Mahesh
    Wu, Xiaolong
    Li, Ang
    Olschanowsky, Catherine
    Barker, Kevin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2020), 2020, : 193 - 204
  • [40] HERMIT: A Benchmark Suite for the Internet of Medical Things
    Limaye, Ankur
    Adegbija, Tosiron
    IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (05): : 4212 - 4222