SupermarQ: A Scalable Quantum Benchmark Suite

被引:23
|
作者
Tomesh, Teague [1 ,2 ]
Gokhale, Pranav [2 ]
Omole, Victory [2 ]
Ravi, Gokul Subramanian [3 ]
Smith, Kaitlin N. [3 ]
Viszlai, Joshua [3 ]
Wu, Xin-Chuan [3 ]
Hardavellas, Nikos [4 ]
Martonosi, Margaret R. [1 ]
Chong, Frederic T. [2 ,3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Supertech, Chicago, IL 60615 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[4] Northwestern Univ, Dept Comp Sci, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Quantum Computing; Benchmarking; Program Characterization; ERROR-CORRECTION; ALGORITHMS;
D O I
10.1109/HPCA53966.2022.00050
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The emergence of quantum computers as a new computational paradigm has been accompanied by speculation concerning the scope and timeline of their anticipated revolutionary changes. While quantum computing is still in its infancy, the variety of different architectures used to implement quantum computations make it difficult to reliably measure and compare performance. This problem motivates our introduction of SupermarQ, a scalable, hardware-agnostic quantum benchmark suite which uses application-level metrics to measure performance. SupermarQ is the first attempt to systematically apply techniques from classical benchmarking methodology to the quantum domain. We define a set of feature vectors to quantify coverage, select applications from a variety of domains to ensure the suite is representative of real workloads, and collect benchmark results from the IBM, IonQ, and AQT@LBNL platforms. Looking forward, we envision that quantum benchmarking will encompass a large cross-community effort built on open source, constantly evolving benchmark suites. We introduce SupermarQ as an important step in this direction.
引用
收藏
页码:587 / 603
页数:17
相关论文
共 50 条
  • [1] Quantum Benchmark Suite for IBM's Backend based on SupermarQ
    Yooyuen, Chalothorn
    Bavontaweepanya, Ruchipas
    Prechaprapranwong, Prapong
    Sarochawikasit, Rajchawit
    [J]. 2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 595 - 599
  • [2] A Scalable Many-Objective Pathfinding Benchmark Suite
    Weise, Jens
    Mostaghim, Sanaz
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (01) : 188 - 194
  • [3] Towards a Quantum Benchmark Suite with Standardized KPIs
    Becker, Colin Kai-Uwe
    Tcholtchev, Nikolay
    Gheorghe-Pop, Ilie-Daniel
    Bock, Sebastian
    Seidel, Raphael
    Hauswirth, Manfred
    [J]. 2022 IEEE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C 2022), 2022, : 160 - 163
  • [4] μSuite: A Benchmark Suite for Microservices
    Sriraman, Akshitha
    Wenisch, Thomas F.
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC), 2018, : 1 - 12
  • [5] DPUBench: An application-driven scalable benchmark suite for comprehensive DPU evaluation
    Wang Z.
    Wang C.
    Wang L.
    [J]. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2023, 3 (02):
  • [6] A BENCHMARK CHARACTERIZATION OF THE EEMBC BENCHMARK SUITE
    Poovey, Jason A.
    Conte, Thomas M.
    Levy, Markus
    Gal-On, Shay
    [J]. IEEE MICRO, 2009, 29 (05) : 18 - 29
  • [7] Classically efficient quantum scalable Fermi-Hubbard benchmark
    Gard, Bryan T.
    Meier, Adam M.
    [J]. PHYSICAL REVIEW A, 2022, 105 (04)
  • [8] ParchMint: A Microfluidics Benchmark Suite
    Crites, Brian
    Sanka, Radhakrishna
    Lippai, Joshua
    McDaniel, Jeffrey
    Brisk, Philip
    Densmore, Douglas
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC), 2018, : 78 - 79
  • [9] A benchmark suite for mobile robots
    Baltes, J
    [J]. 2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 1101 - 1106
  • [10] Bench++ benchmark suite
    [J]. Dr Dobb's J Software Tools Prof Program, 10 (58):