The geometry of global production and factor price equalisation

被引:1
|
作者
Ekeland, Ivar [1 ]
Guesnerie, Roger [2 ,3 ]
机构
[1] Univ British Columbia, Canada Res Chair Math Econ, Vancouver, BC V6T 1Z2, Canada
[2] Coll France, Paris Sch Econ, Paris, France
[3] EHESS, Paris, France
关键词
Theory of production; Hecksher-Ohlin; Stolper-Samuelson; Factor price equalisation; TRADE THEORY; ECONOMIES;
D O I
10.1016/j.jmateco.2009.11.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a production economy where commodities are partitioned into K irreproducible factors and L reproducible goods, and the production technologies have constant returns to scale. We examine the geometry of the global production set in the space of commodities, and we derive theorems of non-substitution type. We define the "factors values" of the different goods, we use them to characterize the efficient production plans, and we investigate in detail the relations between the prices of goods and the prices of factors. We show that the prices of factors uniquely determine the prices of goods, and that, generically, equalising the prices of 2K goods equalises the prices of factors. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:666 / 690
页数:25
相关论文
共 50 条
  • [41] Global Geometry of Bayesian Statistics
    Mori, Atsuhide
    [J]. ENTROPY, 2020, 22 (02)
  • [42] BRANE UNIVERSE: GLOBAL GEOMETRY
    Smirnov, Alexey
    [J]. PARTICLE PHYSICS AT THE YEAR OF ASTRONOMY, 2011, : 271 - 273
  • [43] Global texture in Lyra geometry
    Rahaman, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2003, 118 (01): : 17 - 25
  • [44] Brane Universe: Global Geometry
    Berezin, Victor
    [J]. INVISIBLE UNIVERSE INTERNATIONAL CONFERENCE, 2010, 1241 : 497 - 504
  • [45] ON THE GLOBAL GEOMETRY OF THE STEPHANI UNIVERSE
    KRASINSKI, A
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1983, 15 (07) : 673 - 689
  • [46] The geometry of global protected lands
    Schauman, Santiago A.
    Penuelas, Josep
    Jobbagy, Esteban G.
    Baldi, German
    [J]. NATURE SUSTAINABILITY, 2024, 7 (01) : 82 - 89
  • [47] Information geometry in a global setting
    Mori, Atsuhide
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2018, 48 (03) : 291 - 305
  • [48] Changing Geometry of Global Polycentricity
    Gromyko, Alexey
    [J]. SRAVNITELNAYA POLITIKA-COMPARATIVE POLITICS, 2012, 3 (02): : 59 - +
  • [49] GLOBAL GEOMETRY OF RIEMANNIAN FOLIAGES
    MOLINO, P
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1982, 85 (01): : 45 - 76
  • [50] Global monopoles in Lyra geometry
    Rahaman, F
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (06): : 775 - 779