Measurement Back-Action in Quantum Point-Contact Charge Sensing

被引:6
|
作者
Kueng, Bruno [1 ]
Gustavsson, Simon [1 ,2 ]
Choi, Theodore [1 ]
Shorubalko, Ivan [1 ,3 ]
Pfaeffli, Oliver [1 ]
Hassler, Fabian [4 ]
Blatter, Gianni
Reinwald, Matthias [5 ]
Wegscheider, Werner [1 ,5 ]
Schoen, Silke [6 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] MIT, Cambridge, MA 02139 USA
[3] EMPA, CH-8600 Dubendorf, Switzerland
[4] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[5] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[6] ETH, FIRST Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
quantum dots; quantum wires; noise; single-electron tunneling; COULOMB-BLOCKADE; ELECTRON-SPIN; READ-OUT; NOISE;
D O I
10.3390/e12071721
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Charge sensing with quantum point-contacts (QPCs) is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC's shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action) used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.
引用
收藏
页码:1721 / 1732
页数:12
相关论文
共 50 条
  • [31] Fast single-charge sensing with a rf quantum point contact
    Reilly, D. J.
    Marcus, C. M.
    Hanson, M. P.
    Gossard, A. C.
    APPLIED PHYSICS LETTERS, 2007, 91 (16)
  • [32] Quantum point-contact switches using silver particles
    Akai-Kasaya, M
    Nishihara, K
    Saito, A
    Kuwahara, Y
    Aono, M
    APPLIED PHYSICS LETTERS, 2006, 88 (02) : 1 - 3
  • [33] MATHEMATICAL-MODELS FOR QUANTUM POINT-CONTACT SPECTROSCOPY
    EXNER, P
    SEBA, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1988, 38 (01) : 1 - 11
  • [34] METHOD TO INVESTIGATE THE RANDOM POTENTIAL IN A QUANTUM POINT-CONTACT
    LARKIN, IA
    SUKHORUKOV, EV
    PHYSICAL REVIEW B, 1994, 49 (08): : 5498 - 5507
  • [35] Two point-contact interferometer for quantum Hall systems
    Chamon, CDC
    Freed, DE
    Kivelson, SA
    Sondhi, SL
    Wen, XG
    PHYSICAL REVIEW B, 1997, 55 (04): : 2331 - 2343
  • [36] Quantum point-contact sensors: State of the art and prospects
    Kamarchuk, Gennadii
    Pospelov, Olexander
    Vakula, Volodymyr
    Faulques, Eric
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 402
  • [37] QUANTUM NONDEMOLITION STROBOSCOPIC OBSERVABLES AND MULTIPUMPING BACK-ACTION EVASION SCHEMES
    ONOFRIO, R
    PHYSICS LETTERS A, 1990, 148 (1-2) : 1 - 7
  • [38] Cooling a micromechanical resonator by quantum back-action from a noisy qubit
    Wang, Ying-Dan
    Li, Yong
    Xue, Fei
    Bruder, C.
    Semba, K.
    PHYSICAL REVIEW B, 2009, 80 (14):
  • [39] Strong back-action of a linear circuit on a single electronic quantum channel
    Parmentier, F. D.
    Anthore, A.
    Jezouin, S.
    le Sueur, H.
    Gennser, U.
    Cavanna, A.
    Mailly, D.
    Pierre, F.
    NATURE PHYSICS, 2011, 7 (12) : 935 - 938
  • [40] Exchange statistics, charge detection and back-action dephasing by a mesoscopic beam collider
    Lee, Youngnae
    Khym, Gyong Luck
    Kang, Kicheon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (39)