Measurement Back-Action in Quantum Point-Contact Charge Sensing

被引:6
|
作者
Kueng, Bruno [1 ]
Gustavsson, Simon [1 ,2 ]
Choi, Theodore [1 ]
Shorubalko, Ivan [1 ,3 ]
Pfaeffli, Oliver [1 ]
Hassler, Fabian [4 ]
Blatter, Gianni
Reinwald, Matthias [5 ]
Wegscheider, Werner [1 ,5 ]
Schoen, Silke [6 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] MIT, Cambridge, MA 02139 USA
[3] EMPA, CH-8600 Dubendorf, Switzerland
[4] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[5] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[6] ETH, FIRST Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
quantum dots; quantum wires; noise; single-electron tunneling; COULOMB-BLOCKADE; ELECTRON-SPIN; READ-OUT; NOISE;
D O I
10.3390/e12071721
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Charge sensing with quantum point-contacts (QPCs) is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC's shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action) used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.
引用
收藏
页码:1721 / 1732
页数:12
相关论文
共 50 条
  • [1] MEASUREMENT BACK-ACTION Listening with quantum dots
    Ladd, Thaddeus D.
    NATURE PHYSICS, 2012, 8 (07) : 511 - 512
  • [2] Measurement Back-Action in Stacked Graphene Quantum Dots
    Bischoff, D.
    Eich, M.
    Zilberberg, O.
    Roessler, C.
    Ihn, T.
    Ensslin, K.
    NANO LETTERS, 2015, 15 (09) : 6003 - 6008
  • [3] BACK-ACTION IN THE MEASUREMENT OF MACROSCOPIC QUANTUM SUPERPOSITIONS IN MICROWAVE CAVITIES
    ZAUGG, T
    WILKENS, M
    MEYSTRE, P
    FOUNDATIONS OF PHYSICS, 1993, 23 (06) : 857 - 871
  • [4] Emergence of the geometric phase from quantum measurement back-action
    Cho, Young-Wook
    Kim, Yosep
    Choi, Yeon-Ho
    Kim, Yong-Su
    Han, Sang-Wook
    Lee, Sang-Yun
    Moon, Sung
    Kim, Yoon-Ho
    NATURE PHYSICS, 2019, 15 (07) : 665 - +
  • [5] Quantum Back-Action of an Individual Variable-Strength Measurement
    Hatridge, M.
    Shankar, S.
    Mirrahimi, M.
    Schackert, F.
    Geerlings, K.
    Brecht, T.
    Sliwa, K. M.
    Abdo, B.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    Devoret, M. H.
    SCIENCE, 2013, 339 (6116) : 178 - 181
  • [6] Emergence of the geometric phase from quantum measurement back-action
    Young-Wook Cho
    Yosep Kim
    Yeon-Ho Choi
    Yong-Su Kim
    Sang-Wook Han
    Sang-Yun Lee
    Sung Moon
    Yoon-Ho Kim
    Nature Physics, 2019, 15 : 665 - 670
  • [7] On the back-action of THz measurement on the total current of quantum devices
    Marian, D.
    Zanghi, N.
    Oriols, X.
    2014 INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE), 2014,
  • [8] Time-resolved charge detection and back-action in quantum circuits
    Ihn, T.
    Gustavsson, S.
    Gasser, U.
    Leturcq, R.
    Shorubalko, I.
    Ensslin, K.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04): : 803 - 808
  • [9] Quantum back-action in measurements of zero-point mechanical oscillations
    Khalili, Farid Ya.
    Miao, Haixing
    Yang, Huan
    Safavi-Naeini, Amir H.
    Painter, Oskar
    Chen, Yanbei
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [10] Phonon-mediated back-action of a charge readout on a double quantum dot
    Gasser, U.
    Gustavsson, S.
    Kueng, B.
    Ensslin, K.
    Ihn, T.
    NANOTECHNOLOGY, 2010, 21 (27)