Non-monogenic division fields of elliptic curves

被引:3
|
作者
Smith, Hanson [1 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
关键词
Division field; Torsion field; Monogenic; Power integral basis; PRIMES;
D O I
10.1016/j.jnt.2021.03.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For various positive integers n, we show the existence of infinite families of elliptic curves over Q with n-division fields that are not monogenic, i.e., such that the ring of integers does not admit a power integral basis. We parametrize some of these families explicitly. Moreover, we show that every E/Q without CM has infinitely many non-monogenic division fields. Our main technique combines a global description of the Frobenius obtained by Duke and Toth with an algorithm based on ideas of Dedekind. As a counterpoint, we are able to use different aspects of the arithmetic of elliptic curves to exhibit a family of monogenic 2-division fields. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 187
页数:14
相关论文
共 50 条
  • [21] GALOIS PROPERTIES OF DIVISION-FIELDS OF ELLIPTIC-CURVES
    MASSER, DW
    WUSTHOLZ, G
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 : 247 - 254
  • [22] A family of monogenic S4 quartic fields arising from elliptic curves
    Gassert, T. Alden
    Smith, Hanson
    Stange, Katherine E.
    JOURNAL OF NUMBER THEORY, 2019, 197 : 361 - 382
  • [24] DIVISION POINTS OF ELLIPTIC CURVES AND ABELLIAN FUNCTIONS OVER NUMBER FIELDS
    LANG, S
    AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (01) : 124 - 132
  • [25] Additive structure of non-monogenic simplest cubic fieldsAdditive structure of non-monogenic simplest cubic fieldsD. Gil-Muñoz, M. Tinková
    Daniel Gil-Muñoz
    Magdaléna Tinková
    The Ramanujan Journal, 2025, 66 (3)
  • [26] General theory of polygenic or non-monogenic functions - The derivative congruence of circles
    Kasner, E
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1928, 14 : 75 - 82
  • [27] A note on factorisation patterns of division polynomials of elliptic curves over finite fields
    Miret, Josep M.
    Sadornil, Daniel
    Tena, Juan
    Valera, Javier
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2023, 99 (08) : 55 - 60
  • [28] Clinical Phenotypes and Outcomes in Monogenic Versus Non-monogenic Very Early Onset Inflammatory Bowel Disease
    Collen, Lauren, V
    Kim, David Y.
    Field, Michael
    Okoroafor, Ibeawuchi
    Saccocia, Gwen
    Whitcomb, Sydney Driscoll
    Green, Julia
    Dong, Michelle Dao
    Barends, Jared
    Carey, Bridget
    Weatherly, Madison E.
    Rockowitz, Shira
    Sliz, Piotr
    Liu, Enju
    Eran, Alal
    Grushkin-Lerner, Leslie
    Bousvaros, Athos
    Muise, Aleixo M.
    Klein, Christoph
    Mitsialis, Vanessa
    Ouahed, Jodie
    Snapper, Scott B.
    JOURNAL OF CROHNS & COLITIS, 2022, 16 (09): : 1380 - 1396
  • [29] Do we need the PFAPA syndrome in adults with non-monogenic periodic fevers?
    Fayand, Antoine
    Hentgen, Veronique
    Ducharme-Benard, Stephanie
    Quartier, Pierre
    Bader-Meunier, Brigitte
    Kone-Paut, Isabelle
    Grateau, Gilles
    Georgin-Lavialle, Sophie
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (01)
  • [30] False division towers of elliptic curves
    Rohrlich, DE
    JOURNAL OF ALGEBRA, 2000, 229 (01) : 249 - 279