Interparticle gap distributions on one-dimensional lattices

被引:9
|
作者
D'Orsogna, MR
Chou, T
机构
[1] CALTECH, Dept Chem & Chem Engn, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
来源
关键词
D O I
10.1088/0305-4470/38/3/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the successive binding of two species of particles on a one-dimensional discrete lattice, where the second variety is deposited only after complete adsorption of the first. We consider the two extreme cases of a perfectly irreversible initial deposition, with non-sliding particles, and that of a fully equilibrated one. For the latter we construct the exact gap distribution from the Tonks gas partition function. This distribution is contrasted with that obtained from the random sequential adsorption process. We discuss implications for the kinetics of adsorption of the second species, as well as experimental relevance of our results.
引用
收藏
页码:531 / 542
页数:12
相关论文
共 50 条
  • [21] Solitons in One-Dimensional Lattices with a Flat Band
    Bercioux, Dario
    Dutta, Omjyoti
    Rico, Enrique
    [J]. ANNALEN DER PHYSIK, 2017, 529 (09)
  • [22] MODAL COUPLING IN ONE-DIMENSIONAL ANHARMONIC LATTICES
    SHOLL, D
    [J]. PHYSICS LETTERS A, 1990, 149 (5-6) : 253 - 257
  • [23] Connes' Distance Function on One-Dimensional Lattices
    Aristophanes Dimakis
    Folkert Muller-Hoissen
    [J]. International Journal of Theoretical Physics, 1998, 37 : 907 - 913
  • [24] INVARIANT CHARACTERISTICS OF ONE-DIMENSIONAL BINARY LATTICES
    KERNER, EH
    LOGAN, JG
    [J]. PHYSICAL REVIEW, 1955, 98 (04): : 1165 - 1165
  • [25] Critical Hamiltonians on one-dimensional disordered lattices
    Malyshev, AV
    Domínguez-Adame, F
    Malyshev, VA
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (10): : 2419 - 2423
  • [26] Governing soliton splitting in one-dimensional lattices
    Fratalocchi, A
    Assanto, G
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [27] One-dimensional optical lattices and impenetrable bosons
    Cazalilla, M.A.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (05): : 536061 - 536064
  • [28] Lifting of Gibbs states in one-dimensional lattices
    Meson, Alejandro
    Vericat, Fernando
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (01) : 1 - 13
  • [29] On the anomalous thermal conductivity of one-dimensional lattices
    Lepri, S
    Livi, R
    Politi, A
    [J]. EUROPHYSICS LETTERS, 1998, 43 (03): : 271 - 276
  • [30] Topological superconductors in one-dimensional mosaic lattices
    Zeng, Qi-Bo
    Lu, Rong
    You, Li
    [J]. EPL, 2021, 135 (01)