Phase field fracture models to predict crack initiation and propagation in anti-reflective coatings

被引:10
|
作者
Praud, F. [1 ,2 ]
Schmitt, T. [1 ]
Zabeida, O. [1 ]
Maiza, S. [3 ]
Martinu, L. [1 ]
Levesque, M. [2 ]
机构
[1] Polytech Montreal, Funct Coating & Surface Engn Lab, Dept Engn Phys, 2500 Chemin Polytech, Montreal, PQ H3T 1J4, Canada
[2] Polytech Montreal, Lab Multiscale Mech, Dept Mech Engn, 2500 Chemin Polytech, Montreal, PQ H3T 1J4, Canada
[3] Essilor Inc Corp, 81 Blvd Jean Baptiste Oudry, F-94000 Creteil, France
基金
加拿大自然科学与工程研究理事会;
关键词
Phase field fracture; Anti-reflective coatings; Finite element simulation; Mechanical strength performance; GRADIENT-ENHANCED DAMAGE; FINITE-ELEMENT-METHOD; BRITTLE-FRACTURE; MECHANICAL PROPERTIES; THIN-FILMS; FORMULATION; BEHAVIOR; FAILURE; STRESS; INTERFACE;
D O I
10.1016/j.tsf.2021.138920
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The performance of optical coating systems are frequently limited by the formation of defects and cracks, hence deteriorating the optical properties, film integrity and durability. Typical anti-reflective coating systems consist of inorganic low index and high index thin oxide films (e.g., SiO2 and ZrO2) on polymeric substrates that can be subjected to complex strain states induced by environmental effects such as thermal excursions or even by the manufacturing process. Any crack in the multi-layer stack is likely to be problematic in terms of optical performance and visual comfort for the wearer and also in terms of the mechanical durability of the stack. To overcome this limitation, the development of predictive tools is essential to improve the design of coatings systems while complementing experimental analyses. Thus, in this work, we performed numerical simulations by means of phase field fracture models relying on the finite element method and the energy minimization principle. Specifically, we developed and implemented a modelling strategy that can be applied as a readily usable dimensioning tool with a potential to optimize and predict the mechanical behaviour of optical coating systems upon crack initiation and propagation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An assessment of phase field fracture: crack initiation and growth
    Kristensen, Philip K.
    Niordson, Christian F.
    Martinez-Paneda, Emilio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2203):
  • [22] Laser conditioning of high-reflective and anti-reflective coatings in vacuum environments
    Ling, Xiulan
    Zhao, Yuanan
    Li, Dawei
    Shao, Jianda
    Fan, Zhengxiu
    OPTICS COMMUNICATIONS, 2010, 283 (13) : 2728 - 2731
  • [23] Silicon Oxynitride Based Scratch Resistant Anti-Reflective Coatings
    Wang, Jue
    Bouchard, Jonathan P.
    Hart, Gary A.
    Oudard, Jean Francois
    Paulson, Charles A.
    Sachenik, Paul A.
    Price, James J.
    ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR III, 2018, 10627
  • [24] Anti-reflective coatings for CRTs by sol-gel process
    Abe, K
    Sanada, Y
    Morimoto, T
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2001, 22 (1-2) : 151 - 166
  • [25] MEGARA anti-reflective coatings: theoretical and observed throughput estimations
    Ortiz, R.
    Carrasco, E.
    Paez, G.
    Pompa, O.
    Sanchez-Blanco, E.
    Gil de Paz, A.
    Gallego, J.
    Iglesias-Paramo, J.
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION III, 2018, 10706
  • [26] Omega Bianisotropic Metasurfaces as Huygens' Metasurfaces with Anti-Reflective Coatings
    Marcus, Sherman W.
    Epstein, Ariel
    2020 FOURTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2020,
  • [27] New 193nm bottom anti-reflective coatings
    Nakayama, K
    Kishioka, T
    Arase, SY
    Sakamoto, R
    Hiroi, Y
    Nakajima, Y
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 920 - 928
  • [28] ANALYSIS OF ANTI-REFLECTIVE COATINGS FOR NA+ AND K+
    PUNYAKUMLEARD, S
    ARNOLD, J
    RADFORD, JL
    SCHMIDT, MS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 187 (APR): : 148 - INDE
  • [29] Anti-reflective coatings by APCVD using graded index layers
    Neuman, GA
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1997, 218 : 92 - 99
  • [30] Double layer anti-reflective coatings for silicon solar cells
    Wright, DN
    Marstein, ES
    Holt, A
    CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2005, 2005, : 1237 - 1240