Drag Force and Superfluidity in the Supersolid Stripe Phase of a Spin-Orbit-Coupled Bose-Einstein Condensate

被引:5
|
作者
Martone, G. I. [1 ]
Shlyapnikov, G. V. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS, F-91405 Orsay, France
[2] Russian Quantum Ctr, Moscow 143025, Russia
[3] Univ Paris Saclay, CEA Saclay, CNRS, SPEC,CEA, F-91191 Gif Sur Yvette, France
[4] Univ Amsterdam, Inst Phys, Van der Waals Zeeman Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[6] Natl Univ Sci & Technol MISIS, Russian Quantum Ctr, Moscow 119049, Russia
基金
欧洲研究理事会;
关键词
D O I
10.1134/S1063776118110146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagram of a spin-orbit-coupled two-component Bose gas includes a supersolid stripe phase, which is featuring density modulations along the direction of the spin-orbit coupling. This phase has been recently found experimentally [31]. In the present work, we characterize the superfluid behavior of the stripe phase by calculating the drag force acting on a moving impurity. Because of the gapless band structure of the excitation spectrum, the Landau critical velocity vanishes if the motion is not strictly parallel to the stripes, and energy dissipation takes place at any speed. Moreover, due to the spin-orbit coupling, the drag force can develop a component perpendicular to the velocity of the impurity. Finally, by estimating the time over which the energy dissipation occurs, we find that for slow impurities, the effects of friction are negligible on a time scale up to several seconds, which is comparable with the duration of a typical experiment.
引用
收藏
页码:865 / 876
页数:12
相关论文
共 50 条
  • [41] Elementary excitations in a spin-orbit-coupled spin-1 Bose-Einstein condensate
    Chen, Yuanyuan
    Lyu, Hao
    Xu, Yong
    Zhang, Yongping
    NEW JOURNAL OF PHYSICS, 2022, 24 (07):
  • [42] Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice
    Cheng, Yongshan
    Tang, Gaohui
    Adhikari, S. K.
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [43] Collective modes of a spin-orbit-coupled Bose-Einstein condensate: A hydrodynamic approach
    Zheng, Wei
    Li, Zhibing
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [44] Collective-mode dynamics in a spin-orbit-coupled Bose-Einstein condensate
    Chen, Zhu
    Zhai, Hui
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [45] Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate
    Chunyan Li
    Fangwei Ye
    Yaroslav V. Kartashov
    Vladimir V. Konotop
    Xianfeng Chen
    Scientific Reports, 6
  • [46] Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate
    Li, Chunyan
    Ye, Fangwei
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Chen, Xianfeng
    SCIENTIFIC REPORTS, 2016, 6
  • [47] Bose-Einstein condensates in spin-orbit-coupled optical lattices: Flat bands and superfluidity
    Zhang, Yongping
    Zhang, Chuanwei
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [48] Vortex force in compressible spin-orbit-coupled Bose-Einstein condensates
    Toikka, L. A.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [49] A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates
    Jun-Ru Li
    Jeongwon Lee
    Wujie Huang
    Sean Burchesky
    Boris Shteynas
    Furkan Çağrı Top
    Alan O. Jamison
    Wolfgang Ketterle
    Nature, 2017, 543 : 91 - 94
  • [50] Vortices in spin-orbit-coupled Bose-Einstein condensates
    Radic, J.
    Sedrakyan, T. A.
    Spielman, I. B.
    Galitski, V.
    PHYSICAL REVIEW A, 2011, 84 (06):