Anisotropic Foams via Frontal Polymerization

被引:31
|
作者
Alzate-Sanchez, Diego M. [1 ,2 ]
Cencer, Morgan M. [1 ,2 ]
Rogalski, Michael [3 ]
Kersh, Mariana E. [1 ,3 ]
Sottos, Nancy [1 ,3 ]
Moore, Jeffrey S. [1 ,2 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
anisotropy; dicyclopentadiene; foams; frontal polymerization; ring-opening metathesis polymerization; OPENING METATHESIS POLYMERIZATION; COMPOSITES;
D O I
10.1002/adma.202105821
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The properties of foams, an important class of cellular solids, are most sensitive to the volume fraction and openness of its elementary compartments; size, shape, orientation, and the interconnectedness of the cells are other important design attributes. Control of these morphological traits would allow the tailored fabrication of useful materials. While approaches like ice templating have produced foams with elongated cells, there is a need for rapid, versatile, and energy-efficient methods that also control the local order and macroscopic alignment of cellular elements. Here, a fast and convenient method is described to obtain anisotropic structural foams using frontal polymerization. Foams are fabricated by curing mixtures of dicyclopentadiene and a blowing agent via frontal ring-opening metathesis polymerization (FROMP). The materials are characterized using microcomputed tomography (micro-CT) and an image analysis protocol to quantify the morphological characteristics. The cellular structure, porosity, and hardness of the foams change with blowing agent, concentration, and resin viscosity. Moreover, a full factorial combination of variables is used to correlate each parameter with the structure of the obtained foams. The results demonstrate the controlled production of foams with specific morphologies using the simple and efficient method of frontal polymerization.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Anisotropic Biphase Frontal Polymerization toward in Situ Generation of Dual-Component Polymers
    Zhang, Wanchao
    Yang, Shengyang
    Wang, Cai-Feng
    Chen, Su
    MACROMOLECULES, 2015, 48 (16) : 5543 - 5549
  • [12] Rapid Synthesis of Robust Antibacterial and Biodegradable Hydrogels via Frontal Polymerization
    Wang, Jinze
    Li, Hao
    Shen, Hai-Xia
    Zhao, Wei
    Li, Qing
    Wang, Cai-Feng
    Chen, Su
    GELS, 2023, 9 (12)
  • [13] Anisotropic polyion-complex gels via template polymerization
    Shigekura, Y
    Chen, YM
    Furukawa, H
    Kaneko, T
    Kaneko, D
    Osada, Y
    Gong, JP
    ADVANCED MATERIALS, 2005, 17 (22) : 2695 - +
  • [14] Frontal dispersion polymerization
    Pojman, JA
    Gunn, G
    Patterson, C
    Omens, J
    Simmons, C
    JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (20): : 3927 - 3929
  • [15] Nonadiabatic Frontal Polymerization
    P. M. Goldfeder
    V. A. Volpert
    Journal of Engineering Mathematics, 1998, 34 : 301 - 318
  • [16] Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties
    Elsing, J.
    Stefanov, T.
    Gilchrist, M. D.
    Stubenrauch, C.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (07) : 5477 - 5485
  • [17] Frontal dispersion polymerization
    J Phys Chem B, 20 (3927-3929):
  • [18] Nonadiabatic frontal polymerization
    Goldfelder, PM
    Volpert, VA
    JOURNAL OF ENGINEERING MATHEMATICS, 1998, 34 (03) : 301 - 318
  • [19] Frontal polymerization in solution
    Pojman, JA
    Curtis, G
    Ilyashenko, VM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (15) : 3783 - 3784
  • [20] Isothermal frontal polymerization
    Iiyashenko, VM
    Pojman, JA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 174 - PMSE