Robust Monte Carlo localization for mobile robots

被引:989
|
作者
Thrun, S [1 ]
Fox, D
Burgard, W
Dellaert, F
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
基金
美国国家科学基金会;
关键词
mobile robots; localization; position estimation; particle filters; kernel density trees;
D O I
10.1016/S0004-3702(01)00069-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known a:; Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:99 / 141
页数:43
相关论文
共 50 条
  • [31] Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization
    Perez, Javier
    Caballero, Fernando
    Merino, Luis
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 80 (3-4) : 641 - 656
  • [32] Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization
    Javier Pérez
    Fernando Caballero
    Luis Merino
    Journal of Intelligent & Robotic Systems, 2015, 80 : 641 - 656
  • [33] An Enhanced Monte Carlo Localization Algorithm for Mobile Sensor Networks
    Martins, Marcelo H. T.
    Sezaki, Kaoru
    INSS 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON NETWORKED SENSING SYSTEMS, 2008, : 232 - 232
  • [34] Monte Carlo Localization for Mobile Robot with the Improvement of Particle Filter
    Yu, Jinxia
    Tang, Yongli
    Cai, Zixing
    Duan, Zhuohua
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3910 - +
  • [35] Monocular vision based Monte Carlo localization for mobile robot
    Liu, Dong-Bo
    Liu, Guo-Rong
    Yu, Miao-Hua
    Kongzhi yu Juece/Control and Decision, 2010, 25 (02): : 251 - 254
  • [36] EXTENDED MONTE CARLO LOCALIZATION ALGORITHM FOR MOBILE SENSOR NETWORKS
    Wang Weidong Zhu Qingxin (School of Computer Science and Engineering
    Journal of Electronics(China), 2008, (06) : 746 - 760
  • [37] Monte-carlo localization for mobile wireless sensor networks
    Baggio, Aline
    Langendoen, Koen
    MOBILE AD-HOC AND SENSOR NETWORKS, PROCEEDINGS, 2006, 4325 : 317 - +
  • [38] Monte Carlo localization based on off-line feature matching and improved particle swarm optimization for mobile robots
    Xia, Yuqi
    Huang, Yanyan
    Qin, Huchen
    Shi, Yuang
    INTELLIGENT SERVICE ROBOTICS, 2024, 17 (04) : 777 - 791
  • [39] A robust localization algorithm for mobile robots with laser range finders
    Sohn, HJ
    Kim, BK
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3545 - 3550
  • [40] A robust localization method for mobile robots based on ceiling landmarks
    Nguyen, Viet Thang
    Jeong, Moon Seok
    Ahn, Sung Mahn
    Bin Moon, Seung
    Baik, Sung Wook
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 422 - +