Robust Monte Carlo localization for mobile robots

被引:989
|
作者
Thrun, S [1 ]
Fox, D
Burgard, W
Dellaert, F
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
基金
美国国家科学基金会;
关键词
mobile robots; localization; position estimation; particle filters; kernel density trees;
D O I
10.1016/S0004-3702(01)00069-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known a:; Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach. (C) 2001 Published by Elsevier Science B.V.
引用
下载
收藏
页码:99 / 141
页数:43
相关论文
共 50 条
  • [1] Monte Carlo localization for mobile robots
    Dellaert, Frank
    Fox, Dieter
    Burgard, Wolfram
    Thrun, Sebastian
    Proceedings - IEEE International Conference on Robotics and Automation, 1999, 2 : 1322 - 1328
  • [2] Monte Carlo localization for mobile robots
    Dellaert, F
    Fox, D
    Burgard, W
    Thrun, S
    ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, : 1322 - 1328
  • [3] Improved Monte Carlo Localization with Robust Orientation Estimation for Mobile Robots
    Hsu, Chen-Chien
    Kuo, Chia-Jui
    Kao, Wen-Chung
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 3651 - 3656
  • [4] Reliable Monte Carlo localization for mobile robots
    Akai, Naoki
    JOURNAL OF FIELD ROBOTICS, 2023, 40 (03) : 595 - 613
  • [5] Quasi Monte Carlo Localization for Mobile Robots
    Liu, Bingbing
    Zheng, Xi
    Wu, Xiaojun
    Liu, Yiguang
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 620 - 625
  • [6] Uniform Monte Carlo localization - Fast and robust self-localization method for mobile robots
    Ueda, R
    Fukase, T
    Kobayashi, Y
    Arai, T
    Yuasa, H
    Ota, J
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 1353 - 1358
  • [7] Monte Carlo Localization: efficient position estimation for mobile robots
    Fox, Dieter
    Burgard, Wolfram
    Dellaert, Frank
    Thrun, Sebastian
    Proceedings of the National Conference on Artificial Intelligence, 1999, : 343 - 349
  • [8] Monte Carlo localization: Efficient position estimation for mobile robots
    Fox, D
    Burgard, W
    Dellaert, F
    Thrun, S
    SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), 1999, : 343 - 349
  • [9] Cloud-based improved Monte Carlo localization algorithm with robust orientation estimation for mobile robots
    Li, I-hsum
    Wang, Wei-Yen
    Li, Chung-Ying
    Kao, Jia-Zwei
    Hsu, Chen-Chien
    ENGINEERING COMPUTATIONS, 2019, 36 (01) : 178 - 203
  • [10] KLD sampling with Gmapping proposal for Monte Carlo localization of mobile robots
    Guan, Robin Ping
    Ristic, Branko
    Wang, Liuping
    Palmer, Jennifer L.
    INFORMATION FUSION, 2019, 49 : 79 - 88