Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

被引:3
|
作者
Berning, T. [1 ]
Odgaard, M. [2 ]
Kaer, S. K. [1 ]
机构
[1] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
[2] IRD AS, DK-5700 Svendborg, Denmark
来源
POLYMER ELECTROLYTE FUEL CELLS 11 | 2011年 / 41卷 / 01期
关键词
MULTIPHASE; CATHODE; WATER; TRANSPORT;
D O I
10.1149/1.3635720
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode gas phase from drying out. It is shown that the membrane humidity level increases with decreasing stoichiometric flow ratios to values of lambda approximate to 7. Operating the cathode side at a stoichiometric flow ratio of xi(c) = 1.2 appears feasible under steady state conditions, while our simulations suggest that the anode stoichiometry may even be as low as xi(a) = 1.05. The effect of operation pressure and temperature on the membrane water content is studied. Finally, experiments are suggested to determine the kinetic absorption coefficient and the specific surface area of the electrolyte inside the catalyst layers.
引用
收藏
页码:1897 / 1908
页数:12
相关论文
共 50 条
  • [1] Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field - A modeling study
    Berning, T.
    Kaer, S. K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8477 - 8489
  • [2] Cold-start of parallel and interdigitated flow-field polymer electrolyte membrane fuel cell
    Santamaria, Anthony D.
    Bachman, John
    Park, Jae Wan
    [J]. ELECTROCHIMICA ACTA, 2013, 107 : 327 - 338
  • [3] Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations
    Santamaria, Anthony D.
    Bachman, John
    Park, Jae Wan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5807 - 5812
  • [4] Modeling of flow field in polymer electrolyte membrane fuel cell
    Karvonen, Suvi
    Hottinen, Tero
    Saarinen, Jaakko
    Himanen, Olli
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (02) : 876 - 884
  • [5] A novel cooling flow field design for polymer electrolyte membrane fuel cell stack
    Alizadeh, E.
    Rahgoshay, S. M.
    Rahimi-Esbo, M.
    Khorshidian, M.
    Saadat, S. H. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (20) : 8525 - 8532
  • [6] Experimental investigation of the effect of bioinspired flow field design on polymer electrolyte membrane fuel cell
    Bunyan, Sadiq T.
    Dhahad, Hayder A.
    Khudhur, Dhamyaa S.
    Yusaf, Talal
    Hall, Steve
    [J]. IONICS, 2024, 30 (08) : 4733 - 4747
  • [7] Polymer Electrolyte Membrane Fuel Cell (PEMFC) Flow Field Plate: Design, Materials and Characterisation
    Hamilton, P. J.
    Pollet, B. G.
    [J]. FUEL CELLS, 2010, 10 (04) : 489 - 509
  • [8] A parametric numerical study on the performance of polymer electrolyte membrane fuel cell with intermediate-blocked interdigitated flow field designs
    Bagherighajari, Fatemeh
    Bilondi, Abbas Moradi
    Abdollahzadehsangroudi, Mohammadmahdi
    Hamrang, Ali
    Pascoa, Jose Carlos
    [J]. FUEL CELLS, 2023, 23 (04) : 304 - 322
  • [9] Polymer electrolyte membrane fuel cell flow field design criteria - Application to parallel serpentine flow patterns
    Ghanbarian, A.
    Kermani, M. J.
    Scholta, J.
    Abdollahzadeh, M.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 166 : 281 - 296
  • [10] Flow field configuration design for a large-scale hydrogen polymer electrolyte membrane fuel cell
    Wang, Yulin
    Guan, Chao
    Li, Hua
    Zhao, Yulong
    Wang, Cheng
    He, Wei
    [J]. APPLIED ENERGY, 2023, 351