Reducing Dimensionality of Data Using Autoencoders

被引:2
|
作者
Janakiramaiah, B. [1 ]
Kalyani, G. [2 ]
Narayana, S. [3 ]
Krishna, T. Bala Murali [4 ]
机构
[1] PVP Siddhartha Inst Technol, Vijayawada, India
[2] DVR & Dr HS MIC Coll Technol, Vijayawada, India
[3] Gudlavalleru Engn Coll, Gudlavalleru, India
[4] SSIET, Nuzvid, India
关键词
Autoencoders; PCA; Dimensionality reduction;
D O I
10.1007/978-981-32-9690-9_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data dimensionality reduction is a long-standing pre-processing step in machine learning algorithms. Many of the efficient methods are devised to reduce the dimensionality of data very effectively; however, they are incapable of recovering the original data. But the autoencoders are effective not only in reducing the dimensionality but also reconstructing the original data. In this paper, we are attempting to explore the dimensionality reduction capability of autoencoders, and try to comprehend the difference between autoencoder and PCA dimensionality reduction methods. Experiments are conducted on both the methods using MNIST datasets. The results show that the autoencoder can indeed learn somewhat dissimilar from PCA method.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [1] Reducing dimensionality of spectrograms using convolutional autoencoders
    Jenkins, William F.
    Gerstoft, Peter
    Chien, Chih-Chieh
    Ozanich, Emma
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [2] The Effect of Autoencoders over Reducing the Dimensionality of A Dermatology Data Set
    Caliskan, Abdullah
    Badem, Hasan
    Basturk, Alper
    Yuksel, Mehmet Emin
    [J]. 2016 MEDICAL TECHNOLOGIES NATIONAL CONFERENCE (TIPTEKNO), 2015,
  • [3] Dimensionality Reduction of Mass Spectrometry Imaging Data using Autoencoders
    Thomas, Spencer A.
    Race, Alan M.
    Steven, Rory T.
    Gilmore, Ian S.
    Bunch, Josephine
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [4] Reducing the dimensionality of data using tempered distributions
    Takhanov, Rustem
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 133
  • [5] Dimensionality Reduction Using Convolutional Autoencoders
    Mittal, Shweta
    Sangwan, Om Prakash
    [J]. ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 507 - 516
  • [6] Big Data Dimensionality Reduction for Wireless Sensor Networks Using Stacked Autoencoders
    Sirshar, Muneeba
    Saleem, Sajid
    Ilyas, Muhammad U.
    Khan, Muhammad Murtaza
    Alkatheiri, Mohammed Saeed
    Alowibdi, Jalal S.
    [J]. RESEARCH & INNOVATION FORUM 2019: TECHNOLOGY, INNOVATION, EDUCATION, AND THEIR SOCIAL IMPACT, 2019, : 391 - 400
  • [7] REDUCING THE DIMENSIONALITY OF HYPERSPECTRAL DATA USING DIFFUSION MAPS
    du Plessis, Louis
    Damelin, Steven
    Sears, Michael
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3265 - +
  • [8] REDUCING DATA DIMENSIONALITY OF ECG SIGNAL USING DEEP LEARNING
    Harvey, Christopher
    Noheria, Amit
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 26 - 26
  • [9] Dimensionality Reduction for Cluster Identification in Metagenomics using Autoencoders
    Maduranga, Uditha
    Wijegunarathna, Kalana
    Weerasinghe, Sadeep
    Perera, Indika
    Wickramarachchi, Anuradha
    [J]. 2020 20TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER-2020), 2020, : 113 - 118
  • [10] Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions
    Charte, David
    Charte, Francisco
    Herrera, Francisco
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9549 - 9560