Von Neumann Regular Cellular Automata

被引:4
|
作者
Castillo-Ramirez, Alonso [1 ]
Gadouleau, Maximilien [2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Matemat, Guadalajara, Jalisco, Mexico
[2] Univ Durham, Sch Engn & Comp Sci, South Rd, Durham DH1 3LE, England
关键词
Cellular automata; Linear cellular automata; Monoids; von Neumann regular elements; Generalised inverses;
D O I
10.1007/978-3-319-58631-1_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space A(G) defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over A(G). In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element tau is an element of CA(G; A) is von Neumann regular (or simply regular) if there exists sigma is an element of CA(G; A) such that tau circle sigma circle tau = tau and sigma circle tau circle sigma = sigma, where circle is the composition of functions. Such an element s is called a generalised inverse of tau. The monoid CA(G; A) itself is regular if all its elements are regular. We establish that CA(G; A) is regular if and only if vertical bar G vertical bar = 1 or vertical bar A vertical bar = 1, and we characterise all regular elements in CA(G; A) when G and A are both finite. Furthermore, we study regular linear CA when A = V is a vector space over a field F; in particular, we show that every regular linear CA is invertible when G is torsion-free (e.g. when G = Z(d), d >= 1), and that every linear CA is regular when V is finite-dimensional and G is locally finite with char(F) inverted iota circle (g) for all g is an element of G.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [31] ON PRIME NONPRIMITIVE VON NEUMANN REGULAR ALGEBRAS
    Abrams, Gene
    Bell, Jason P.
    Rangaswamy, Kulumani M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2375 - 2392
  • [32] THE REALIZATION PROBLEM FOR VON NEUMANN REGULAR RINGS
    Ara, Pere
    RING THEORY 2007, PROCEEDINGS, 2009, : 21 - 37
  • [33] Combining local and von Neumann regular rings
    Abu Osba, E
    Henriksen, M
    Alkam, O
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (07) : 2639 - 2653
  • [34] On the torsion graph and von Neumann regular rings
    Rad, P. Malakooti
    Ghalandarzadeh, Sh.
    Shirinkam, S.
    FILOMAT, 2012, 26 (02) : 47 - 53
  • [35] GROUP ACTIONS ON VON NEUMANN REGULAR RINGS
    ZHANG YINHUO(Institute of Mathematics
    Chinese Annals of Mathematics, 1994, (02) : 235 - 240
  • [36] Regular Semigroups of Endomorphisms of von Neumann Factors
    G. G. Amosov
    A. V. Bulinskii
    M. E. Shirokov
    Mathematical Notes, 2001, 70 : 583 - 598
  • [37] VON NEUMANN REGULAR RINGS .3.
    MING, RYC
    MONATSHEFTE FUR MATHEMATIK, 1978, 86 (03): : 251 - 257
  • [38] Regular semigroups of endomorphisms of von Neumann factors
    Amosov, GG
    Bulinskii, AV
    Shirokov, ME
    MATHEMATICAL NOTES, 2001, 70 (5-6) : 583 - 598
  • [39] ON (STRONGLY) GORENSTEIN VON NEUMANN REGULAR RINGS
    Mahdou, Najib
    Tamekkante, Mohammed
    Yassemi, Siamak
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3242 - 3252
  • [40] NONDEGENERATE JORDAN RINGS ARE VON NEUMANN REGULAR
    MCCRIMMON, K
    JOURNAL OF ALGEBRA, 1969, 11 (01) : 111 - +