Travelling waves in the Fisher-KPP equation with nonlinear degenerate or singular diffusion

被引:0
|
作者
Drabek, Pavel [1 ,2 ]
Takac, Peter [3 ]
机构
[1] Univ West Bohemia, Dept Math, POB 314, Plzen 30614, Czech Republic
[2] Univ West Bohemia, NTIS Ctr New Technol Informat Soc, POB 314, Plzen 30614, Czech Republic
[3] Univ Rostock, Inst Math, Ulmenstr 69,Haus 3, D-18055 Rostock, Germany
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 02期
关键词
Fisher-Kolmogoroff-Petrovsky-Piscounoff equation; Travelling wave; Degenerate and; or singular diffusion; Non-smooth reaction term; Existence and non-existence of travelling waves; An overdetermined first-order boundary value problem; SHARP PROFILES; MODELS;
D O I
10.1007/s00245-020-09674-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional reaction-diffusion equation of Fisher-Kolmogoroff-Petrovsky-Piscounoff type. We investigate the effect of the interaction between the nonlinear diffusion coefficient and the reaction term on the existence and non-existence of travelling waves. Our diffusion coefficient is allowed to be degenerate or singular at both equilibrium points, 0 and 1, while the reaction term need not be differentiable. These facts influence the existence and qualitative properties of travelling waves in a substantial way.
引用
收藏
页码:1185 / 1208
页数:24
相关论文
共 50 条
  • [1] Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion
    Pavel Drábek
    Peter Takáč
    [J]. Applied Mathematics & Optimization, 2021, 84 : 1185 - 1208
  • [2] On the Fisher-KPP equation with fast nonlinear diffusion
    King, JR
    McCabe, PM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2038): : 2529 - 2546
  • [3] THE FISHER-KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION
    Stan, Diana
    Luis Vazquez, Juan
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3241 - 3276
  • [4] Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation
    Ducrot, Arnaud
    Nadin, Gregoire
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (09) : 3115 - 3140
  • [5] On the transition from initial data to travelling waves in the Fisher-KPP equation
    Sherratt, JA
    [J]. DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (02): : 167 - 174
  • [6] Travelling waves and instability in a Fisher-KPP problem with a nonlinear advection and a high-order diffusion
    Palencia, Jose Luis Diaz
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07):
  • [7] TRAVELING FRONT SOLUTIONS IN A NONLINEAR DIFFUSION DEGENERATE FISHER-KPP EQUATION VIA CONLEY INDEX
    El Adnani, Fatiha
    Talibi Alaoui, Hamad
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2010, 35 (2D): : 179 - 188
  • [8] The non-local Fisher-KPP equation: travelling waves and steady states
    Berestycki, Henri
    Nadin, Gregoire
    Perthame, Benoit
    Ryzhik, Lenya
    [J]. NONLINEARITY, 2009, 22 (12) : 2813 - 2844
  • [9] Stability of Travelling Fronts of the Fisher-KPP Equation in RN
    Huang, Rui
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (4-5): : 599 - 622
  • [10] The Fisher-KPP problem with doubly nonlinear diffusion
    Audrito, Alessandro
    Luis Vazquez, Juan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7647 - 7708