Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation

被引:31
|
作者
Ducrot, Arnaud [1 ,2 ]
Nadin, Gregoire [3 ,4 ]
机构
[1] Univ Bordeaux, IMB, UMR 5251, F-33076 Bordeaux, France
[2] CNRS, IMB, UMR 5251, F-33400 Talence, France
[3] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
[4] CNRS, UMR 7598, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
Travelling wave solutions; Time delay; Maximal wavetrain; Oscillations; REACTION-DIFFUSION EQUATION; SYSTEMS;
D O I
10.1016/j.jde.2014.01.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the behaviour of travelling wave solutions for the diffusive Hutchinson equation with time delay. Using a phase plane analysis we prove the existence of travelling wave solution for each wave speed c >= 2. We show that for each given and admissible wave speed, such travelling wave solutions converge to a unique maximal wavetrain. As a consequence the existence of a nontrivial maximal wavetrain is equivalent to the existence of travelling wave solution non-converging to the stationary state u = 1. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3115 / 3140
页数:26
相关论文
共 50 条