Transmission reconstruction of transparent solutions using particle swarm optimisation

被引:1
|
作者
Farazandemehr, Elham [1 ]
Daneshvar, Elaheh [2 ]
机构
[1] Isfahan Univ Technol, Dept Text Engn, Esfahan, Iran
[2] Amirkabir Univ Technol, Dept Text Engn, Tehran, Iran
关键词
COLORIMETRIC CHARACTERIZATION; REFLECTANCE;
D O I
10.1111/cote.12583
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this paper, we present a new approach for transmission reconstruction of transparent solutions by combining the particle swarm optimisation algorithm and the matrix S method. To perform colorimetric characterisation, a digital camera was characterised using a training set of coloured solutions and the particle swarm optimisation method to obtain an optimised transfer matrix of RGB to CIE XYZ values. Then the transformation matrix was used to calculate the CIE XYZ values of test colour solutions. Next, the estimated CIE XYZ values were used to reconstruct the transmission spectra of the unknown solutions by applying the matrix S method. The experimental results on real datasets demonstrate that the proposed technique significantly outperforms the existing method in terms of transmission reconstruction.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
  • [1] Minimum Bit Error Rate Multiuser Transmission Designs Using Particle Swarm Optimisation
    Yao, W.
    Chen, S.
    Tan, S.
    Hanzo, L.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (10) : 5012 - 5017
  • [2] Particle Swarm Optimisation Aided MIMO Multiuser Transmission Designs
    Yao, W.
    Chen, S.
    Hanzo, L.
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (02) : 266 - 275
  • [3] Troposcatter transmission loss prediction based on particle swarm optimisation
    Yuan, Dizhe
    Chen, Xihong
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2021, 15 (03) : 332 - 341
  • [4] Transistor Sizing Using Particle Swarm Optimisation
    White, Lyndon
    While, Lyndon
    Deeks, Ben
    Boussaid, Farid
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 259 - 266
  • [5] Nonlinear mapping using particle swarm optimisation
    Edwards, AI
    Engelbrecht, AP
    Franken, N
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 306 - 313
  • [6] Comparison of the Lagrange's and Particle Swarm Optimisation Solutions of an Economic Emission Dispatch Problem with transmission constraints
    Krishnamurthy, Senthil
    Tzoneva, Raynitchka
    [J]. IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES 2012), 2012,
  • [7] Methodology for optimisation of draft gear design using Particle Swarm Optimisation
    Wu, Q.
    Cole, C.
    Spiryagin, M.
    [J]. DYNAMICS OF VEHICLES ON ROADS AND TRACKS, 2016, : 1419 - 1425
  • [8] Optimisation of full-toroidal continuously variable transmission in conjunction with fixed ratio mechanism using particle swarm optimisation
    Delkhosh, Mojtaba
    Foumani, Mahmoud Saadat
    [J]. VEHICLE SYSTEM DYNAMICS, 2013, 51 (05) : 671 - 683
  • [9] Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation
    Tholen, Christoph
    Nolle, Lars
    [J]. ARTIFICIAL INTELLIGENCE XXXIV, AI 2017, 2017, 10630 : 384 - 396
  • [10] A Discrete Particle Swarm Optimisation Algorithm for Geographical Map Contour Reconstruction
    Fergani, Baha
    Kholladi, Mohamed-Khireddine
    [J]. 2016 SIXTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION AND COMMUNICATION TECHNOLOGY AND ITS APPLICATIONS (DICTAP), 2016, : 142 - 144