Nonlinear mapping using particle swarm optimisation

被引:0
|
作者
Edwards, AI [1 ]
Engelbrecht, AP [1 ]
Franken, N [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large datasets consisting of high-dimensional vectors commonly describe complex objects. Having these vectors exist in a smaller dimension where the topological characteristics of the original space are preserved, allows clusters or patterns inherent in the data to be identified. This paper investigates the capability of various Particle Swarm Optimisation (PSO) structures to effectively map a high-dimensional dataset to a lower-dimensional set. Four different local nonlinear mapping methods are investigated. Results obtained from the experiments give a clear indication of which nonlinear method to use when certain conditions hold.
引用
收藏
页码:306 / 313
页数:8
相关论文
共 50 条
  • [1] Comparing particle swarm optimisation and genetic algorithms for nonlinear mapping
    Edwards, A.
    Engelbrecht, A. P.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 694 - +
  • [2] Transistor Sizing Using Particle Swarm Optimisation
    White, Lyndon
    While, Lyndon
    Deeks, Ben
    Boussaid, Farid
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 259 - 266
  • [3] Identification of nonlinear systems using modified particle swarm optimisation: a hydraulic suspension system
    Alfi, Alireza
    Fateh, Mohammad Mehdi
    [J]. VEHICLE SYSTEM DYNAMICS, 2011, 49 (06) : 871 - 887
  • [4] Methodology for optimisation of draft gear design using Particle Swarm Optimisation
    Wu, Q.
    Cole, C.
    Spiryagin, M.
    [J]. DYNAMICS OF VEHICLES ON ROADS AND TRACKS, 2016, : 1419 - 1425
  • [5] Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation
    Tholen, Christoph
    Nolle, Lars
    [J]. ARTIFICIAL INTELLIGENCE XXXIV, AI 2017, 2017, 10630 : 384 - 396
  • [6] A Tunable Radial Basis Function Model for Nonlinear System Identification Using Particle Swarm Optimisation
    Chen, S.
    Hong, X.
    Luk, B. L.
    Harris, C. J.
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 6762 - 6767
  • [7] Diversity Preservation Using Excited Particle Swarm Optimisation
    Pace, Shannon S.
    Woodward, Clinton J.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 61 - 68
  • [8] Cooperative spectrum sensing using particle swarm optimisation
    Zheng, S.
    Lou, C.
    Yang, X.
    [J]. ELECTRONICS LETTERS, 2010, 46 (22) : 1525 - 1526
  • [9] An alternative approach for particle swarm optimisation using serendipity
    Procopio Paiva, Fabio Augusto
    Ferreira Costa, Jose Alfredo
    Muniz Silva, Claudio Rodrigues
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (02) : 81 - 90
  • [10] Edge and Corner Extraction Using Particle Swarm Optimisation
    Setayesh, Mahdi
    Johnston, Mark
    Zhang, Mengjie
    [J]. AI 2010: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2010, 6464 : 323 - +