Improving geospatial query performance of an interoperable geographic situation-awareness system for disaster response

被引:1
|
作者
Zhang, Chuanrong [1 ]
Zhao, Tian [2 ]
Usery, E. Lynn [3 ]
Varanka, Dalia [3 ]
Li, Weidong [1 ]
机构
[1] Univ Connecticut, Dept Geog, Ctr Environm Sci & Engn, Storrs, CT 06269 USA
[2] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53201 USA
[3] USGS, Ctr Excellence Geospatial Informat Sci, Rolla, MO USA
关键词
INFORMATION; TRANSMISSION;
D O I
10.1111/tgis.12614
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Disaster response operations require fast and coordinated actions based on real-time disaster situation information. Although crowdsourced geospatial data applications have been demonstrated to be valuable tools for gathering real-time disaster situation information, they only provide limited utility for disaster response coordination because of the lack of semantic compatibility and interoperability. To help overcome the semantic incompatibility and heterogeneity problems, we use Geospatial Semantic Web (GSW) technologies. We then combine GSW technologies with Web Feature Service requests to access multiple servers. However, a GSW-based geographic information system often has poor performance due to the complex geometric computations required. The objective of this research is to explore how to use optimization techniques to improve the performance of an interoperable geographic situation-awareness system (IGSAS) based on GSW technologies for disaster response. We conducted experiments to evaluate various client-side optimization techniques for improving the performance of an IGSAS prototype for flood disaster response in New Haven, Connecticut. Our experimental results show that the developed prototype can greatly reduce the runtime costs of geospatial semantic queries through on-the-fly spatial indexing, tile-based rendering, efficient algorithms for spatial join, and caching, especially for those spatial-join geospatial queries that involve a large number of spatial features and heavy geometric computation.
引用
收藏
页码:508 / 525
页数:18
相关论文
共 47 条