Thermal effect on the generated quantum correlation between two superconducting qubits

被引:10
|
作者
Mohamed, A-B A. [1 ,2 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities, Al Aflaj, Saudi Arabia
[2] Assiut Univ, Fac Sci, Assiut, Egypt
关键词
quantum correlations; thermal field; superconducting qubits; DISCORD; INFORMATION; STATES; DYNAMICS; CAVITY; SINGLE; ATOMS;
D O I
10.1088/1612-2011/13/8/085202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum correlations in two superconducting (SC) qubits, placed in an SC-cavity and driven by noise fields, are investigated by using quantum discord (QD) and measurement-induced nonlocality with quantum entanglement (QE). It was found that the initial values of QD and measurement-induced non-locality (MIN) grow from zero-values to non-zero values. This growth of quantum correlations is due to the unitary qubits-field interaction. It is found that by increasing the coupling to the thermal environment, the generated correlations (of QD, MIN and QE) return to their zero-values and the phenomena of the sudden death and sudden birth only occur for QE. It is interesting to note that the state of two superconducting qubits has the quantum discord and quantum nonlocality without entanglement. The ability of the thermal field parameter for the disappearance of the generated correlations depend on the spontaneous emission parameter and vice versa.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    [J]. SCIENCE, 2017, 358 (6360) : 199 - 202
  • [22] The effect and control on remaining the quantum correlation by the coupling symmetry between qubits and the bath
    Yu, Y. X.
    Hu, Y.
    Ji, Y. H.
    [J]. OPTIK, 2013, 124 (21): : 4750 - 4753
  • [23] ENTANGLEMENT OF TWO SUPERCONDUCTING QUBITS INTERACTING WITH TWO-MODE THERMAL FIELD
    Bashkirov, E. K.
    Mastyugin, M. S.
    [J]. COMPUTER OPTICS, 2013, 37 (03) : 278 - 285
  • [24] Classical and quantum correlations between two qubits interacting with a field in thermal spin states
    Algarni, M.
    Abdel-Khalek, S.
    Berrada, K.
    [J]. LASER PHYSICS LETTERS, 2023, 20 (09)
  • [25] Robust Concurrent Remote Entanglement Between Two Superconducting Qubits
    Narla, A.
    Shankar, S.
    Hatridge, M.
    Leghtas, Z.
    Sliwa, K. M.
    Zalys-Geller, E.
    Mundhada, S. O.
    Pfaff, W.
    Frunzio, L.
    Schoelkopf, R. J.
    Devoret, M. H.
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [26] Quantum correlation measurements for two qubits in a common squeezed bath
    Angeles Gallego, M.
    Orszag, M.
    [J]. REVISTA MEXICANA DE FISICA, 2011, 57 (03) : 48 - 55
  • [27] Quantum computing with many superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    [J]. NEW DIRECTIONS IN MESOSCOPIC PHYSICS (TOWARDS NANOSCIENCE), 2003, 125 : 351 - 360
  • [28] Hamiltonian quantum computing with superconducting qubits
    Ciani, A.
    Terhal, B. M.
    DiVincenzo, D. P.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
  • [29] Quantum control of superconducting phase qubits
    Johnson, PR
    Strauch, FW
    Dragt, AJ
    Anderson, JR
    Lobb, CJ
    Wellstood, FC
    [J]. QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 232 - 241
  • [30] The future of quantum computing with superconducting qubits
    Bravyi, Sergey
    Dial, Oliver
    Gambetta, Jay M.
    Gil, Dario
    Nazario, Zaira
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 132 (16)