Euclidean Best-Worst Method and Its Application

被引:14
|
作者
Kocak, Huseyin [1 ]
Caglar, Atalay [2 ]
Oztas, Gulin Zeynep [1 ]
机构
[1] Pamukkale Univ, Dept Business Adm, Quantitat Methods Div, TR-20160 Denizli, Turkey
[2] Pamukkale Univ, Dept Econometr, Operat Res Div, TR-20160 Denizli, Turkey
关键词
Multi-criteria decision-making (MCDM); multi-attribute decision-making (MADM); pairwise comparison; best-worst method (BWM); Euclidean norm; MAPLE; ATTRIBUTE DECISION-MAKING; SELECTION; MCDM; EXTENSION;
D O I
10.1142/S0219622018500323
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we propose Euclidean best-worst method (Euclidean BWM), which does not require any other extra calculations and analysis compared to nonlinear Chebyshev BWM. Using numerical examples, we illustrate and discuss the efficiency of the Euclidean BWM based on minimizing Euclidean norm instead of Chebyshev norm and using the consistency index matrix. Obtained results show that Euclidean BWM is an efficient tool resulting in reliable unique solutions, regardless of the number of the criteria, comparing with the linear and nonlinear model of the Chebyshev BWM. Moreover, we develop a MAPLE package "BWM" using only pairwise comparison vectors as the arguments to obtain the unique solution of a given problem by both the Euclidean BWM and linear model of Chebyshev BWM.
引用
收藏
页码:1587 / 1605
页数:19
相关论文
共 50 条
  • [41] An introduction to the application of (case 1) best-worst scaling in marketing research
    Louviere, Jordan
    Lings, Ian
    Islam, Towhidul
    Gudergan, Siegfried
    Flynn, Terry
    [J]. INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2013, 30 (03) : 292 - 303
  • [42] Conflict-handling style measurement: a best-worst scaling application
    Daly, Timothy M.
    Lee, Julie Anne
    Soutar, Geoffrey N.
    Rasmi, Sarah
    [J]. INTERNATIONAL JOURNAL OF CONFLICT MANAGEMENT, 2010, 21 (03) : 281 - 308
  • [43] A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best-Worst Method
    Mazurek, Jiri
    Perzina, Radomir
    Ramik, Jaroslav
    Bartl, David
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 13
  • [44] Is the best-worst method path dependent? Evidence from an empirical study
    Mazurek, Jiri
    Perzina, Radomir
    Strzalka, Dominik
    Kowal, Bartosz
    Kuras, Pawel
    Puhrova, Barbora Petru
    Rajs, Robert
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2024, 22 (03): : 387 - 409
  • [45] A Novel Extension of Best-Worst Method With Intuitionistic Fuzzy Reference Comparisons
    Wan, Shuping
    Dong, Jiuying
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1698 - 1711
  • [46] Best-worst scaling, an alternative method to assess perceptual sound qualities
    Rosi, Victor
    Ravillion, Aliette
    Houix, Olivier
    Susini, Patrick
    [J]. JASA EXPRESS LETTERS, 2022, 2 (06):
  • [47] Can We Move Beyond First-Choice DCEs Using Best-Worst Using Best-Worst, Best-Best or Ranking?
    Huls, Samare P. I.
    Lancsar, Emily
    Donkers, Bas
    Ride, Jemimah
    [J]. PATIENT-PATIENT CENTERED OUTCOMES RESEARCH, 2021, 14 (06): : 866 - 866
  • [48] MODAL SPLIT ANALYSIS BY BEST-WORST METHOD AND MULTINOMINAL LOGIT MODEL
    Cingel, Michal
    Drliciak, Marek
    Celko, Jan
    Zabovska, Katarina
    [J]. TRANSPORT PROBLEMS, 2023, 18 (01) : 55 - 65
  • [49] Ranking of choice cues for smartphones using the Best-Worst scaling method
    Pinto, Luis
    Kaynak, Erdener
    Chow, Clement S. F.
    Zhang, Lida L.
    [J]. ASIA PACIFIC JOURNAL OF MARKETING AND LOGISTICS, 2019, 31 (01) : 223 - 245
  • [50] A multiplicative best-worst method for multi-criteria decision making
    Brunelli, Matteo
    Rezaei, Jafar
    [J]. OPERATIONS RESEARCH LETTERS, 2019, 47 (01) : 12 - 15