Magnetic Field Effects of Charge Transfer Excitons in Organic Semiconductor Devices

被引:3
|
作者
Nikiforov, Daniel [1 ,2 ]
Ehrenfreund, Eitan [1 ,2 ]
机构
[1] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Solid State Inst, IL-3200003 Haifa, Israel
关键词
magnetic field effect; organic semiconductor; charge transfer exciton; SPIN-DIFFUSION; MAGNETORESISTANCE; PHOTOCURRENT; COMPOSITES; ABSORPTION; SEPARATION; POLYMERS;
D O I
10.1002/ijch.202100091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The topic of this review is the effect of magnetic field on photo-current (PC) in organic semiconductor devices. Magnetic field modifies the fraction of the singlet/triplet population in the charge transfer excitons (CTE) whose lifetime is spin configuration dependent yielding magneto-PC (MPC). We review MPC in the framework of the polaron pair model and emphasize the effect of CTE lifetime on MPC. In addition to a detailed calculation of the MPC response we find a range of physical parameters in which the response follows a simple ' fit function '. For example, a sum of wide and narrow Lorentzian functions, MPC(B)=c(w)B(2)/(B-2+b(w)(2))+c(n)B(2)/(B-2+b(n)(2)), in the case of hyperfine interaction; or a Voigt profile V=L*G, where the sign * stands for the convolution operation between a Lorentzian (L) and a Gaussian (G) functions, in the case of thermal spin polarization. We provide expressions for the fit parameters in terms of physical parameters.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spin and magnetic field effects in organic semiconductor devices
    Wohlgenannt, M
    Vardeny, ZV
    Shi, J
    Francis, TL
    Jiang, XM
    Mermer, Ö
    Veeraraghavan, G
    Wu, D
    Xiong, ZH
    [J]. IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2005, 152 (04): : 385 - 392
  • [2] Charge-Transfer Excitons at Organic Semiconductor Surfaces and Interfaces
    Zhu, X. -Y.
    Yang, Q.
    Muntwiler, M.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) : 1779 - 1787
  • [3] Charge transfer excitons and image potential states on organic semiconductor surfaces
    Yang, Qingxin
    Muntwiler, Matthias
    Zhu, X. -Y.
    [J]. PHYSICAL REVIEW B, 2009, 80 (11)
  • [4] Excitons and the lifetime of organic semiconductor devices
    Forrest, Stephen R.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2044):
  • [5] A Model of Charge-Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects
    Lee, Chee Kong
    Shi, Liang
    Willard, Adam P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (12): : 2246 - 2251
  • [6] COLL 328-Charge transfer excitons on a crystalline organic semiconductor surface
    Muntwiler, Matthias
    Zhu, X-Y.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [7] Charge-transfer excitons at semiconductor polymer heterojunctions in efficient organic photovoltaic diodes
    Provencher, Francoise
    Sakowicz, Maciej
    Brosseau, Colin-Nadeau
    Leonelli, Richard
    Silva, Carlos
    [J]. PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS X, 2011, 8098
  • [8] Charge Transport in Organic Semiconductor Devices
    Li, Ling
    Kosina, Hans
    [J]. ORGANIC ELECTRONICS, 2010, 223 : 301 - 323
  • [9] Quantum Confinement of Hybrid Charge Transfer Excitons in GaN/InGaN/Organic Semiconductor Quantum Wells
    Panda, Anurag
    Forrest, Stephen R.
    [J]. NANO LETTERS, 2017, 17 (12) : 7853 - 7858
  • [10] Accumulating bright excitons on the hybridized local and charge transfer excited state for organic semiconductor lasers
    Chen, Rui
    Zhou, Wu
    Gong, Yanjun
    Zhou, Zeyang
    Wang, Hong
    Dai, Chenghu
    Zhao, Yong Sheng
    Che, Yanke
    Zhang, Chuang
    Yao, Jiannian
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (27) : 9945 - 9952