Bayesian Alignment Model for LC-MS Data

被引:0
|
作者
Tsai, Tsung-Heng [1 ,2 ]
Tadesse, Mahlet G. [3 ]
Wang, Yue [2 ]
Ressom, Habtom W. [1 ]
机构
[1] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[2] Virginia Tech, Dept Elect & Comp Engn, Arlington, VA USA
[3] Georgetown Univ, Dept Math & Stat, Washington, DC USA
基金
美国国家科学基金会;
关键词
alignment; Bayesian inference; block Metropolis-Hastings algorithm; liquid chromatography-mass spectrometry (LC-MS); Markov chain Monte Carlo (MCMC); SPECTROMETRY-BASED PROTEOMICS; MASS-SPECTROMETRY; BIOMARKER DISCOVERY; PLATFORM;
D O I
10.1109/BIBM.2011.81
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Bayesian alignment model (BAM) is proposed for alignment of liquid chromatography-mass spectrometry (LC-MS) data. BAM is composed of two important components: prototype function and mapping function. Estimation of both functions is crucial for the alignment result. We use Markov chain Monte Carlo (MCMC) methods for inference of model parameters. To address the trapping effect in local modes, we propose a block Metropolis-Hastings algorithm that leads to better mixing behavior in updating the mapping function coefficients. We applied BAM to both simulated and real LC-MS datasets, and compared its performance with the Bayesian hierarchical curve registration model (BHCR). Performance evaluation on both simulated and real datasets shows satisfactory results in terms of correlation coefficients and ratio of overlapping peak areas.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [41] Inferring serum proteolytic activity from LC-MS/MS data
    Dittwald, Piotr
    Ostrowski, Jerzy
    Karczmarski, Jakub
    Gambin, Anna
    BMC BIOINFORMATICS, 2012, 13
  • [42] Computational quantification of peptides from LC-MS data
    Schulz-Trieglaff, Ole
    Hussong, Rene
    Groepl, Clemens
    Leinenbach, Andreas
    Hildebrandt, Andreas
    Huber, Christian
    Reinert, Knut
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (07) : 685 - 704
  • [43] Algorithms and tools for the preprocessing of LC-MS metabolomics data
    Castillo, Sandra
    Gopalacharyulu, Peddinti
    Yetukuri, Laxman
    Oresic, Matej
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 108 (01) : 23 - 32
  • [44] Buffers for LC-MS
    Neue, UD
    AMERICAN LABORATORY, 2001, 33 (22) : 51 - 51
  • [45] Evaluation of Normalization Methods for Analysis of LC-MS Data
    Ranjbar, Mohammad R. Nezami
    Zhao, Yi
    Tadesse, Mahlet G.
    Wang, Yue
    Ressom, Habtom W.
    2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [46] Normalization of LC-MS data using Gaussian process
    Ranjbar, Mohammad R. Nezami
    Tadesse, Mahlet G.
    Wang, Yue
    Ressom, Habtom W.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 187 - 190
  • [47] Advanced data-reduction strategies for LC-MS
    Antler, Margaret
    Lashin, Vitally
    Bayliss, Mark
    SPECTROSCOPY, 2006, : 27 - 27
  • [48] Modeling Exopeptidase Activity from LC-MS Data
    Kluge, Boguslaw
    Gambin, Anna
    Niemiro, Wojciech
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (02) : 395 - 406
  • [49] Bromadiolone poisoning: LC-MS method and pharmacokinetic data
    Vindenes, Vigdis
    Karinen, Ritva
    Hasvold, Inger
    Bernard, Jean-Paul
    Morland, Jorg G.
    Christophersen, Asbjorg S.
    JOURNAL OF FORENSIC SCIENCES, 2008, 53 (04) : 993 - 996
  • [50] Filtering procedures for untargeted LC-MS metabolomics data
    Schiffman, Courtney
    Petrick, Lauren
    Perttula, Kelsi
    Yano, Yukiko
    Carlsson, Henrik
    Whitehead, Todd
    Metayer, Catherine
    Hayes, Josie
    Rappaport, Stephen
    Dudoit, Sandrine
    BMC BIOINFORMATICS, 2019, 20 (1)