Bayesian Alignment Model for LC-MS Data

被引:0
|
作者
Tsai, Tsung-Heng [1 ,2 ]
Tadesse, Mahlet G. [3 ]
Wang, Yue [2 ]
Ressom, Habtom W. [1 ]
机构
[1] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[2] Virginia Tech, Dept Elect & Comp Engn, Arlington, VA USA
[3] Georgetown Univ, Dept Math & Stat, Washington, DC USA
基金
美国国家科学基金会;
关键词
alignment; Bayesian inference; block Metropolis-Hastings algorithm; liquid chromatography-mass spectrometry (LC-MS); Markov chain Monte Carlo (MCMC); SPECTROMETRY-BASED PROTEOMICS; MASS-SPECTROMETRY; BIOMARKER DISCOVERY; PLATFORM;
D O I
10.1109/BIBM.2011.81
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Bayesian alignment model (BAM) is proposed for alignment of liquid chromatography-mass spectrometry (LC-MS) data. BAM is composed of two important components: prototype function and mapping function. Estimation of both functions is crucial for the alignment result. We use Markov chain Monte Carlo (MCMC) methods for inference of model parameters. To address the trapping effect in local modes, we propose a block Metropolis-Hastings algorithm that leads to better mixing behavior in updating the mapping function coefficients. We applied BAM to both simulated and real LC-MS datasets, and compared its performance with the Bayesian hierarchical curve registration model (BHCR). Performance evaluation on both simulated and real datasets shows satisfactory results in terms of correlation coefficients and ratio of overlapping peak areas.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [1] Profile-Based LC-MS Data Alignment-A Bayesian Approach
    Tsai, Tsung-Heng
    Tadesse, Mahlet G.
    Wang, Yue
    Ressom, Habtom W.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 494 - 503
  • [2] Multi-profile Bayesian alignment model for LC-MS data analysis with integration of internal standards
    Tsai, Tsung-Heng
    Tadesse, Mahlet G.
    Di Poto, Cristina
    Pannell, Lewis K.
    Mechref, Yehia
    Wang, Yue
    Ressom, Habtom W.
    [J]. BIOINFORMATICS, 2013, 29 (21) : 2774 - 2780
  • [3] A statistical method for chromatographic alignment of LC-MS data
    Wang, Pei
    Tang, Hua
    Fitzgibbon, Matthew P.
    McIntosh, Martin
    Coram, Marc
    Zhang, Hui
    Yi, Eugene
    Aebersold, Ruedi
    [J]. BIOSTATISTICS, 2007, 8 (02) : 357 - 367
  • [4] Probabilistic Mixture Regression Models for Alignment of LC-MS Data
    Befekadu, Getachew K.
    Tadesse, Mahlet G.
    Tsai, Tsung-Heng
    Ressom, Habtom W.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (05) : 1417 - 1424
  • [5] Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction
    Palmblad, Magnus
    Mills, Davinia J.
    Bindschedler, Laurence V.
    Cramer, Rainer
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2007, 18 (10) : 1835 - 1843
  • [6] A Bayesian Based Functional Mixed-Effects Model for Analysis of LC-MS Data
    Befekadu, Getachew K.
    Tadesse, Mahlet G.
    Ressom, Habtom W.
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 6743 - +
  • [7] Post alignment clustering procedure for comparative quantitative proteomics LC-MS data
    de Groot, Joost C. W.
    Fiers, Mark W. E. J.
    van Ham, Roeland C. H. J.
    America, Antoine H. P.
    [J]. PROTEOMICS, 2008, 8 (01) : 32 - 36
  • [8] Efficient model-based clustering for LC-MS data
    Luksza, Marta
    Kluge, Boguslaw
    Ostrowski, Jerzy
    Karczmarski, Jakub
    Gambin, Anna
    [J]. ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2006, 4175 : 32 - 43
  • [9] Probabilistic Model for Untargeted Peak Detection in LC-MS Using Bayesian Statistics
    Woldegebriel, Michael
    Vivo-Truyols, Gabriel
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (14) : 7345 - 7355
  • [10] Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS
    Ranjbar, Mohammad R. Nezami
    Tadesse, Mahlet G.
    Wang, Yue
    Ressom, Habtom W.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) : 914 - 927