Exploiting Variable Precision Computation Array for Scalable Neural Network Accelerators

被引:0
|
作者
Yang, Shaofei [1 ]
Liu, Longjun [1 ]
Li, Baoting [1 ]
Sun, Hongbin [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep Neural Networks; Accelerator; Energy Efficiency Computing Array; Dynamic Quantization; Resiliency;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a flexible Variable Precision Computation Array (VPCA) component for different accelerators, which leverages a sparsification scheme for activations and a low bits serial-parallel combination computation unit for improving the efficiency and resiliency of accelerators. The VPCA can dynamically decompose the width of activation/weights (from 32bit to 3bit in different accelerators) into 2-bits serial computation units while the 2bits computing units can be combined in parallel computing for high throughput. We propose an on-the-fly compressing and calculating strategy SLE-CLC (single lane encoding, cross lane calculation), which could further improve performance of 2-bit parallel computing. The experiments results on image classification datasets show VPCA can outperforms DaDianNao, Stripes, Loom-2bit by 4.67x, 2.42x, 1.52x without other overhead on convolution layers.
引用
收藏
页码:315 / 319
页数:5
相关论文
共 50 条
  • [31] Impact of NCFET on Neural Network Accelerators
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Salamin, Sami
    Chauhan, Yogesh S.
    Henkel, Jorg
    Amrouch, Hussam
    IEEE Access, 2021, 9 : 43748 - 43758
  • [32] FPGA based neural network accelerators
    Kim, Joo-Young
    HARDWARE ACCELERATOR SYSTEMS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2021, 122 : 135 - 165
  • [33] Packaging of Photonic Neural Network Accelerators
    Schwartz, Russell L. T.
    Jahannia, Belal
    Altaleb, Salem
    Yang, Hangbo
    Peserico, Nicola
    Dalir, Hamed
    Sorger, Volker J.
    PROCEEDINGS OF THE IEEE 74TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC 2024, 2024, : 2150 - 2156
  • [34] Impact of NCFET on Neural Network Accelerators
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Salamin, Sami
    Chauhan, Yogesh S.
    Henkel, Joerg
    Amrouch, Hussam
    IEEE ACCESS, 2021, 9 : 43748 - 43758
  • [35] NEURAL NETWORK-BASED COMPRESSION FRAMEWORK FOR DOA ESTIMATION EXPLOITING DISTRIBUTED ARRAY
    Pavel, Saidur R.
    Zhang, Yimin D.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4943 - 4947
  • [36] Exploiting Wireless Technology for Energy-Efficient Accelerators With Multiple Dataflows and Precision
    Liu, Siqin
    Canan, Talha Furkan
    Chenji, Harshavardhan
    Laha, Soumyasanta
    Kaya, Savas
    Karanth, Avinash
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (07) : 2742 - 2755
  • [37] Deep Neural Network for Precision Landing and Variable Flight Planning of Autonomous UAV
    Janousek, J.
    Marcon, P.
    Klouda, J.
    Pokorny, J.
    Raichl, P.
    Siruckova, A.
    2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021), 2021, : 2243 - 2247
  • [38] Thread: Towards fine-grained precision reconfiguration in variable-precision neural network accelerator
    Zhang, Shichang
    Wang, Ying
    Chen, Xiaoming
    Han, Yinhe
    Wang, Yujie
    Li, Xiaowei
    IEICE ELECTRONICS EXPRESS, 2019, 16 (14)
  • [39] Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning Accelerators
    Xu, Hongye
    Liu, Dongfang
    Merkel, Cory
    Zuzak, Michael
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 351 - 356
  • [40] Exploiting bit sparsity in both activation and weight in neural networks accelerators
    Jing, Naifeng
    Zhang, Zihan
    Sun, Yongshuai
    Liu, Pengyu
    Chen, Liyan
    Wang, Qin
    Jiang, Jianfei
    INTEGRATION-THE VLSI JOURNAL, 2023, 88 : 400 - 409