Exploiting Variable Precision Computation Array for Scalable Neural Network Accelerators

被引:0
|
作者
Yang, Shaofei [1 ]
Liu, Longjun [1 ]
Li, Baoting [1 ]
Sun, Hongbin [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep Neural Networks; Accelerator; Energy Efficiency Computing Array; Dynamic Quantization; Resiliency;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a flexible Variable Precision Computation Array (VPCA) component for different accelerators, which leverages a sparsification scheme for activations and a low bits serial-parallel combination computation unit for improving the efficiency and resiliency of accelerators. The VPCA can dynamically decompose the width of activation/weights (from 32bit to 3bit in different accelerators) into 2-bits serial computation units while the 2bits computing units can be combined in parallel computing for high throughput. We propose an on-the-fly compressing and calculating strategy SLE-CLC (single lane encoding, cross lane calculation), which could further improve performance of 2-bit parallel computing. The experiments results on image classification datasets show VPCA can outperforms DaDianNao, Stripes, Loom-2bit by 4.67x, 2.42x, 1.52x without other overhead on convolution layers.
引用
收藏
页码:315 / 319
页数:5
相关论文
共 50 条
  • [1] An Energy Efficient Precision Scalable Computation Array for Neural Radiance Field Accelerator
    Rao, Chaolin
    Wan, Haochuan
    Zheng, Yueyang
    Zhou, Pingqiang
    Lou, Xin
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 260 - 264
  • [2] Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering
    Long, Kangjie
    Rao, Chaolin
    He, Yunxiang
    Yuan, Zhechen
    Zhou, Pingqiang
    Yu, Jingyi
    Lou, Xin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (11) : 4260 - 4270
  • [3] Exploiting Computation Reuse for Stencil Accelerators
    Chi, Yuze
    Cong, Jason
    PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [4] Dynamic Precision Multiplier For Deep Neural Network Accelerators
    Ding, Chen
    Yuxiang, Huan
    Zheng, Lirong
    Zou, Zhuo
    2020 IEEE 33RD INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2020, : 180 - 184
  • [5] Rough Neural Network of Variable Precision
    Hongjian Liu
    Hongya Tuo
    Yuncai Liu
    Neural Processing Letters, 2004, 19 : 73 - 87
  • [6] Rough neural network of variable precision
    Liu, HJ
    Tuo, HY
    Liu, YC
    NEURAL PROCESSING LETTERS, 2004, 19 (01) : 73 - 87
  • [7] Exploiting Model-Level Parallelism in Recurrent Neural Network Accelerators
    Peng, Lu
    Shi, Wentao
    Zhang, Jian
    Irving, Samuel
    2019 IEEE 13TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2019), 2019, : 241 - 248
  • [8] Low-precision logarithmic arithmetic for neural network accelerators
    Christ, Maxime
    de Dinechin, Florent
    Petrot, Frederic
    2022 IEEE 33RD INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP), 2022, : 72 - 79
  • [9] Low-Complexity Precision-Scalable Multiply-Accumulate Unit Architectures for Deep Neural Network Accelerators
    Li, Wenjie
    Hu, Aokun
    Wang, Gang
    Xu, Ningyi
    He, Guanghui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (04) : 1610 - 1614
  • [10] Making the Fault-Tolerance of Emerging Neural Network Accelerators Scalable
    Liu, Tao
    Wen, Wujie
    2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,