Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach
被引:0
|
作者:
Zheng, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
Zheng, Xiaobing
[1
]
Liang, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Business, Hefei, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
Liang, Kun
[2
]
Xia, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
Xia, Qiang
[1
]
Zhang, Dabin
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
Zhang, Dabin
[1
]
机构:
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] Anhui Univ, Sch Business, Hefei, Peoples R China
Bayesian inference;
Double-threshold;
ARMA model;
Markov Chain Monte Carlo;
Stochastic search;
GIBBS SAMPLER;
D O I:
10.1007/s10614-021-10124-7
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
In this paper, we propose an effective Bayesian subset selection method for the double-threshold-variable autoregressive moving-average (DT-ARMA) models. The usual complexity of estimation is increased mainly by capturing the correlation between two threshold variables and including moving-average terms in the model. By adopting the stochastic search variable selection method, combined with the Gibbs sampler and Metropolis-Hastings algorithm, we can simultaneously estimate the unknown parameters and select the best subset model from a large number of possible models. The simulation experiments illustrate that the proposed approach performs well. In applications, two real data sets are analyzed by the proposed method, and the fitted DT-ARMA model is better than the double-threshold autoregressive (DT-AR) model from the view of parsimony.
机构:
Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, EnglandUniv London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England
Godolphin, E. J.
Godolphin, J. D.
论文数: 0引用数: 0
h-index: 0
机构:Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England