Particles and connections on four-manifolds

被引:0
|
作者
Hurtubise, JC [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2K6, Canada
关键词
D O I
10.4310/CAG.1999.v7.n1.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the simple, simply connected classical gauge groups G, we build spaces P(X, Y) homotopy equivalent to the spaces B(X, Y) of gauge equivalence classes of pairs (G-connections on a four-manifold X, trivialisations of the G-bundle over Y subset of X). The space consists of configurations of particle-like connections, each corresponding to an instanton over S-4.
引用
收藏
页码:55 / 93
页数:39
相关论文
共 50 条
  • [1] On Einstein four-manifolds
    de Araujo Costa, É
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (02) : 244 - 255
  • [2] MONOPOLES AND FOUR-MANIFOLDS
    Witten, Edward
    [J]. MATHEMATICAL RESEARCH LETTERS, 1994, 1 (06) : 769 - 796
  • [3] On the conformal systoles of four-manifolds
    Hamilton, M. J. D.
    [J]. MANUSCRIPTA MATHEMATICA, 2006, 121 (04) : 417 - 424
  • [4] FOUR-MANIFOLDS WITH POSITIVE CURVATURE
    Diogenes, R.
    Ribeiro, E.
    Rufino, E.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (02) : 245 - 257
  • [5] Symmetry groups of four-manifolds
    McCooey, MP
    [J]. TOPOLOGY, 2002, 41 (04) : 835 - 851
  • [6] On rational homotopy of four-manifolds
    Terzic, S
    [J]. PROCEEDINGS OF THE WORKSHOP ON CONTEMPORARY GEOMETRY AND RELATED TOPICS, 2004, : 375 - 388
  • [7] Embedded tori in four-manifolds
    Morgan, JW
    Szabó, Z
    [J]. TOPOLOGY, 1999, 38 (03) : 479 - 496
  • [8] On the conformal systoles of four-manifolds
    M. J. D. Hamilton
    [J]. manuscripta mathematica, 2006, 121 : 417 - 424
  • [9] Trisections and spun four-manifolds
    Meier, Jeffrey
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (05) : 1497 - 1524
  • [10] Heterotic solitons on four-manifolds
    Moroianu, Andrei
    Murcia, Angel
    Shahbazi, C. S.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 1463 - 1497