FOUR-MANIFOLDS WITH POSITIVE CURVATURE

被引:2
|
作者
Diogenes, R. [1 ]
Ribeiro, E. [2 ]
Rufino, E. [3 ]
机构
[1] UNILAB, Inst Ciencias Exatas & Nat, Campus Palmares,ROD CE 060,KM 51, BR-62785000 Acarape, CE, Brazil
[2] Univ Fed Ceara UFC, Dept Matemat, CAMPUS Pici,Av Humberto Monte,Bloco 914, BR-60455760 Fortaleza, Ceara, Brazil
[3] Univ Fed Roraima UFRR, Dept Matemat, Campus Paricarana,Av CAP Ene Garcez 2413, BR-69310000 Boa Vista, Parana, Brazil
关键词
4-DIMENSIONAL MANIFOLDS; NONNEGATIVE CURVATURE; EINSTEIN; 4-MANIFOLDS;
D O I
10.1017/S0017089520000130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that a four-dimensional compact oriented half-conformally flat Riemannian manifold M4 is topologically S-4 or CP2, provided that the sectional curvatures all lie in the interval [3 root 3-5/4, 1]. In addition, we use the notion of biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a four-dimensional compact manifold is homeomorphic to a connected sum of copies of the complex projective plane or the 4-sphere.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [1] Four-manifolds with positive isotropic curvature
    Chen, Bing-Long
    Huang, Xian-Tao
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1123 - 1149
  • [2] Four-manifolds with positive isotropic curvature
    Bing-Long Chen
    Xian-Tao Huang
    [J]. Frontiers of Mathematics in China, 2016, 11 : 1123 - 1149
  • [3] A note on Einstein four-manifolds with positive curvature
    Wu, Peng
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 19 - 22
  • [4] Dissolving four-manifolds and positive scalar curvature
    Hanke, B
    Kotschick, D
    Wehrheim, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 545 - 555
  • [5] Dissolving four-manifolds and positive scalar curvature
    B. Hanke
    D. Kotschick
    J. Wehrheim
    [J]. Mathematische Zeitschrift, 2003, 245 : 545 - 555
  • [6] A note on rigidity of Einstein four-manifolds with positive sectional curvature
    Qing Cui
    Linlin Sun
    [J]. manuscripta mathematica, 2021, 165 : 269 - 282
  • [7] COMPLETE CLASSIFICATION OF COMPACT FOUR-MANIFOLDS WITH POSITIVE ISOTROPIC CURVATURE
    Chen, Bing-Long
    Tang, Siu-Hung
    Zhu, Xi-Ping
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 91 (01) : 41 - 80
  • [8] Ricci flow with surgery on four-manifolds with positive isotropic curvature
    Chen, Bing-Long
    Zhu, Xi-Ping
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2006, 74 (02) : 177 - 264
  • [9] A fully nonlinear equation on four-manifolds with positive scalar curvature
    Gursky, MJ
    Viaclovsky, JA
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 63 (01) : 131 - 154
  • [10] A note on rigidity of Einstein four-manifolds with positive sectional curvature
    Cui, Qing
    Sun, Linlin
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 269 - 282