Variance-based sensitivity analysis of dynamic systems with both input and model uncertainty

被引:5
|
作者
Subramanian, Abhinav [1 ]
Mahadevan, Sankaran [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
关键词
Global sensitivity analysis; Dynamic system; Time series; Model uncertainty; Multi-physics; State estimation; Parameter estimation; OUTPUT;
D O I
10.1016/j.ymssp.2021.108423
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper develops a methodology to compute variance-based sensitivity indices for dynamic systems with time series inputs and outputs, while accounting for both aleatory and epistemic uncertainty sources, and both random process and random variable inputs. We present semianalytical methods for computing sensitivity indices for linear systems with Gaussian random process inputs, and for the general case of nonlinear systems with non-Gaussian random process inputs. The novel elements in this approach are the treatment of model form error, quantifying the cumulative effects of uncertainty sources over time, and evaluating sensitivity indices for multi-physics models. Bayesian state and parameter estimation methods are incorporated to quantify the model uncertainty arising from unknown model parameters and model form errors, and sensitivity indices are computed before and after model updating. The proposed methods are illustrated for (a) a linear Timoshenko beam erroneously modeled as an Euler-Bernoulli beam, and (b) hypersonic flow behavior of a flexible panel represented by a coupled multi-physics nonlinear model.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Variance-Based Sensitivity Analysis of the Composite Dynamic Load Model
    Maldonado, Daniel Adrian
    Anitescu, Mihai
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [2] Parameter uncertainty effects on variance-based sensitivity analysis
    Yu, W.
    Harris, T. J.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 596 - 603
  • [3] Variance-Based Global Sensitivity Analysis for Power Systems
    Ni, Fei
    Nijhuis, Michiel
    Nguyen, Phuong H.
    Cobben, Joseph F. G.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (02) : 1670 - 1682
  • [4] Variance-based sensitivity analysis of a forest growth model
    Song, Xiaodong
    Bryan, Brett A.
    Paul, Keryn I.
    Zhao, Gang
    ECOLOGICAL MODELLING, 2012, 247 : 135 - 143
  • [5] Variance-based sensitivity analysis with the uncertainties of the input variables and their distribution parameters
    Wang, Pan
    Lu, Zhenzhou
    Xiao, Sinan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1103 - 1125
  • [6] VARIANCE-BASED SENSITIVITY ANALYSIS ON PSHA
    Wu, Min-Hao
    Wang, Jui-Pin
    Sung, Chia-Ying
    Journal of GeoEngineering, 2024, 19 (03): : 112 - 120
  • [7] Variance-Based Sensitivity Analysis: An Illustration on the Lorenz'63 Model
    Marzban, Caren
    MONTHLY WEATHER REVIEW, 2013, 141 (11) : 4069 - 4079
  • [8] Decomposing Functional Model Inputs for Variance-Based Sensitivity Analysis
    Morris, Max D.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1584 - 1599
  • [9] Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
    Opgenoord, Max M. J.
    Allaire, Douglas L.
    Willcox, Karen E.
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [10] Variance-based global sensitivity analysis for fuzzy random structural systems
    Javidan, Mohammad Mahdi
    Kim, Jinkoo
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (07) : 602 - 615