Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber

被引:88
|
作者
Tritscher, T. [1 ]
Dommen, J. [1 ]
DeCarlo, P. F. [1 ]
Gysel, M. [1 ]
Barmet, P. B. [1 ]
Praplan, A. P. [1 ]
Weingartner, E. [1 ]
Prevot, A. S. H. [1 ]
Riipinen, I. [2 ,3 ]
Donahue, N. M. [3 ]
Baltensperger, U. [1 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
DIFFERENTIAL MOBILITY ANALYZER; MASS-SPECTROMETRY; HIGH-RESOLUTION; EVAPORATION KINETICS; BIOGENIC PRECURSORS; ABSORPTION-MODEL; PARTICLES; THERMODENUDER; SEMIVOLATILE; OXIDATION;
D O I
10.5194/acp-11-11477-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The evolution of secondary organic aerosols (SOA) during (photo-)chemical aging processes was investigated in a smog chamber. Fresh SOA from ozonolysis of 10 to 40 ppb alpha-pinene was formed followed by aging with OH radicals. The particles' volatility and hygroscopicity (expressed as volume fraction remaining (VFR) and hygroscopicity parameter kappa) were measured in parallel with a volatility and hygroscopicity tandem differential mobility analyzer (V/H-TDMA). An aerosol mass spectrometer (AMS) was used for the chemical characterization of the aerosol. These measurements were used as sensitive parameters to reveal the mechanisms possibly responsible for the changes in the SOA composition during aging. A change of VFR and/or kappa during processing of atmospheric aerosols may occur either by addition of SOA mass (by condensation) or by a change of SOA composition leading to different aerosol properties. The latter may occur either by heterogeneous reactions on the surface of the SOA particles, by condensed phase reactions like oligomerization or by an evaporation - gas-phase oxidation - recondensation cycle. The condensation mechanism showed to be dominant when there is a substantial change in the aerosol mass by addition of new molecules to the aerosol phase with time. Experiments could be divided into four periods based on the temporal evolution (qualitative changes) of VFR, kappa and organic mass: O-3 induced condensation, ripening, and OH induced chemical aging first with substantial mass gain and then without significant mass gain.
引用
收藏
页码:11477 / 11496
页数:20
相关论文
共 50 条
  • [41] A large source of low-volatility secondary organic aerosol
    Ehn, Mikael
    Thornton, Joel A.
    Kleist, Einhard
    Sipila, Mikko
    Junninen, Heikki
    Pullinen, Iida
    Springer, Monika
    Rubach, Florian
    Tillmann, Ralf
    Lee, Ben
    Lopez-Hilfiker, Felipe
    Andres, Stefanie
    Acir, Ismail-Hakki
    Rissanen, Matti
    Jokinen, Tuija
    Schobesberger, Siegfried
    Kangasluoma, Juha
    Kontkanen, Jenni
    Nieminen, Tuomo
    Kurten, Theo
    Nielsen, Lasse B.
    Jorgensen, Solvejg
    Kjaergaard, Henrik G.
    Canagaratna, Manjula
    Dal Maso, Miikka
    Berndt, Torsten
    Petaja, Tuukka
    Wahner, Andreas
    Kerminen, Veli-Matti
    Kulmala, Markku
    Worsnop, Douglas R.
    Wildt, Juergen
    Mentel, Thomas F.
    [J]. NATURE, 2014, 506 (7489) : 476 - +
  • [42] The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties - Part 2: Determination of particle hygroscopicity and its dependence on "apparent" volatility
    Topping, D. O.
    Barley, M. H.
    McFiggans, G.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (15) : 7767 - 7779
  • [43] Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol
    Zhao, Yunliang
    Hennigan, Christopher J.
    May, Andrew A.
    Tkacik, Daniel S.
    de Gouw, Joost A.
    Gilman, Jessica B.
    Kuster, William C.
    Borbon, Agnes
    Robinson, Allen L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (23) : 13743 - 13750
  • [44] Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility
    D'Ambro, Emma L.
    Schobesberger, Siegfried
    Gaston, Cassandra J.
    Lopez-Hilfiker, Felipe D.
    Lee, Ben H.
    Liu, Jiumeng
    Zelenyuk, Alla
    Bell, David
    Cappa, Christopher D.
    Helgestad, Taylor
    Li, Ziyue
    Guenther, Alex
    Wang, Jian
    Wise, Matthew
    Caylor, Ryan
    Surratt, Jason D.
    Riedel, Theran
    Hyttinen, Noora
    Salo, Vili-Taneli
    Hasan, Galib
    Kurten, Theo
    Shilling, John E.
    Thornton, Joel A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (17) : 11253 - 11265
  • [45] COMPARISON OF URBAN, RURAL, SMOG CHAMBER AND AUTOMOBILE AEROSOL
    WILSON, WE
    SWARTZ, WE
    KINZER, GW
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1972, : 4 - &
  • [46] SMOG CHAMBER STUDIES OF AEROSOL FORMATION IN ATMOSPHERIC MIXTURES
    KARCH, R
    REISCHL, GP
    WINKLMAYR, W
    PAULSON, S
    WANG, SC
    YIN, FD
    FLAGAN, RC
    SEINFELD, JH
    [J]. JOURNAL OF AEROSOL SCIENCE, 1989, 20 (08) : 995 - 998
  • [47] Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity
    Kostenidou, Evangelia
    Karnezi, Eleni
    Hite, James R., Jr.
    Bougiatioti, Aikaterini
    Cerully, Kate
    Xu, Lu
    Ng, Nga L.
    Nenes, Athanasios
    Pandis, Spyros N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (08) : 5799 - 5819
  • [48] How important is organic aerosol hygroscopicity to aerosol indirect forcing?
    Liu, Xiaohong
    Wang, Jian
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (04):
  • [49] A study on the photo-aging of secondary organic aerosol
    Park, Jiho
    Walser, Maggie
    Gomez, Anthony
    Russell, Ashley
    Nizkorodov, Sergey
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [50] A chamber study of secondary organic aerosol formation by linalool ozonolysis
    Chen, Xi
    Hopke, Philip K.
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (25) : 3935 - 3940