A Novel Approach for Developing Efficient and Convenient Short Assessments to Approximate a Long Assessment
被引:6
|
作者:
Sun, Yuan Hong
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R China
Univ Toronto, Fac Appl Sci & Engn, Toronto, ON, CanadaHangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R China
Sun, Yuan Hong
[1
,2
]
Luo, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R China
Luo, Hong
[1
]
Lee, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Inst Child Study, Toronto, ON, CanadaHangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R China
Lee, Kang
[3
]
机构:
[1] Hangzhou Normal Univ, Affiliated Hosp, Hangzhou, Zhejiang, Peoples R China
[2] Univ Toronto, Fac Appl Sci & Engn, Toronto, ON, Canada
[3] Univ Toronto, Inst Child Study, Toronto, ON, Canada
machine learning;
assessment;
shorten;
the Long to Short approach;
questionnaire;
survey;
anxiety;
depression;
stress;
anxiety disorder;
mood disorder;
GENERALIZED ANXIETY DISORDER;
DEPRESSION;
BURDEN;
D O I:
10.3758/s13428-021-01771-7
中图分类号:
B841 [心理学研究方法];
学科分类号:
040201 ;
摘要:
This paper describes a novel Long to Short approach that uses machine learning to develop efficient and convenient short assessments to approximate a long assessment. This approach is applicable to any assessments used to assess people's behaviors, opinions, attitudes, mental and physical states, traits, aptitudes, abilities, and mastery of a subject matter. We demonstrated the Long to Short approach on the Depression Anxiety Stress Scale (DASS-42) for assessing anxiety levels in adults. We first obtained data for the original assessment from a large sample of participants. We then derived the total scores from participants' responses to all items of the long assessment as the ground truths. Next, we used feature selection techniques to select participants' responses to a subset of items of the long assessment to predict the ground truths accurately. We then trained machine learning models that uses the minimal number of items needed to achieve the prediction accuracy similar to that when the responses to all items of the whole long assessment are used. We generated all possible combinations of minimal number of items to create multiple short assessments of similar predictive accuracies for use if the short assessment is to be done repeatedly. Finally, we implemented the short anxiety assessments in a web application for convenient use with any future participant of the assessment.
机构:
Belgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
Univ Ghent, Fac Sci, Dept Biochem & Microbiol, Lab Microbiol & BCCMLMG Bacteria Collect, Ghent, BelgiumBelgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
Goussarov, Gleb
论文数: 引用数:
h-index:
机构:
Cleenwerck, Ilse
Mysara, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Belgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, BelgiumBelgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
Mysara, Mohamed
Leys, Natalie
论文数: 0引用数: 0
h-index: 0
机构:
Belgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, BelgiumBelgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
Leys, Natalie
Monsieurs, Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Belgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
Inst Trop Med, Vet Protozool, Antwerp, BelgiumBelgian Nucl Res Ctr SCK CEN, Microbiol Unit, Mol, Belgium
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Lu, Kaifeng
Wang, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Wang, Yifan
Jin, Caidi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Jin, Caidi
Liao, Robert
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Ind Engn & Management, S-11428 Stockholm, SwedenZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Liao, Robert
Tan, Weihong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Chem Ind Forestry Prod, Natl Engn Lab Chem Utilizat Biomass, Key Lab Biomass Energy & Mat Jiangsu Prov, Nanjing 210042, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Tan, Weihong
Ye, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Forestry, Inst Chem Ind Forestry Prod, Natl Engn Lab Chem Utilizat Biomass, Key Lab Biomass Energy & Mat Jiangsu Prov, Nanjing 210042, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Ye, Jun
Zhu, Lingjun
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Zhu, Lingjun
Wang, Shurong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China