Toward Predicting Popularity of Social Marketing Messages

被引:0
|
作者
Yu, Bei [1 ]
Chen, Miao [1 ]
Kwok, Linchi [2 ]
机构
[1] Syracuse Univ, Sch Informat Studies, Syracuse, NY 13244 USA
[2] Syracuse Univ, Coll Human Ecol, Syracuse, NY 13244 USA
来源
SOCIAL COMPUTING, BEHAVIORAL-CULTURAL MODELING AND PREDICTION | 2011年 / 6589卷
关键词
text categorization; marketing; social media; prediction; media type;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Popularity of social marketing messages indicates the effectiveness of the corresponding marketing strategies. This research aims to discover the characteristics of social marketing messages that contribute to different level of popularity. Using messages posted by a sample of restaurants on Facebook as a case study, we measured the message popularity by the number of "likes" voted by fans, and examined the relationship between the message popularity and two properties of the messages: (1) content, and (2) media type. Combining a number of text mining and statistics methods, we have discovered some interesting patterns correlated to "more popular" and "less popular social marketing messages. This work lays foundation for building computational models to predict the popularity of social marketing messages in the future.
引用
收藏
页码:317 / +
页数:2
相关论文
共 50 条
  • [31] Discovering and early predicting popularity evolution patterns of social media emergency information
    Yuan, Delin
    Li, Yang
    ASLIB JOURNAL OF INFORMATION MANAGEMENT, 2024,
  • [32] Predicting the Popularity of Games on Steam
    De Luisa, Andraz
    Hartman, Jan
    Nabergoj, David
    Pahor, Samo
    Rus, Marko
    Stevanoski, Bozhidar
    Demsar, Jure
    Strumbelj, Erik
    ELEKTROTEHNISKI VESTNIK, 2021, 88 (04): : 151 - 162
  • [33] Modelling and predicting news popularity
    Hensinger, Elena
    Flaounas, Ilias
    Cristianini, Nello
    PATTERN ANALYSIS AND APPLICATIONS, 2013, 16 (04) : 623 - 635
  • [34] Predicting the popularity of games on steam
    De Luisa, Andraž
    Hartman, Jan
    Nabergoj, David
    Pahor, Samo
    Rus, Marko
    Stevanoski, Bozhidar
    Demšar, Jure
    Štrumbelj, Erik
    Elektrotehniski Vestnik/Electrotechnical Review, 2021, 88 (04): : 151 - 162
  • [35] Optimizing the Popularity of Twitter Messages through User Categories
    Lemahieu, Rupert
    Van Canneyt, Steven
    De Boom, Cedric
    Dhoedt, Bart
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1396 - 1401
  • [36] Modelling and predicting news popularity
    Elena Hensinger
    Ilias Flaounas
    Nello Cristianini
    Pattern Analysis and Applications, 2013, 16 : 623 - 635
  • [37] Predicting the Popularity of Online Content
    Szabo, Gabor
    Huberman, Bernardo A.
    COMMUNICATIONS OF THE ACM, 2010, 53 (08) : 80 - 88
  • [38] Toward Knowledge as a Service (KaaS): Predicting Popularity of Knowledge Services Leveraging Graph Neural Networks
    Lin, Haozhe
    Fan, Yushun
    Zhang, Jia
    Bai, Bing
    Xu, Zhenghua
    Lukasiewicz, Thomas
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (01) : 642 - 655
  • [39] Social media influencer marketing: the role of influencer type, brand popularity, and consumers' need for uniqueness
    Ceylan, Melis
    Hayran, Ceren
    INTERNATIONAL JOURNAL OF ADVERTISING, 2025,
  • [40] Toward social responsibility, not the social responsibility semblance: marketing does not need a conscience
    Gaski J.F.
    AMS Review, 2022, 12 (1-2) : 7 - 24