Ranking Documents with Query-Topic Sensitivity

被引:0
|
作者
Hatakenaka, Shota [1 ]
Shimada, Satoshi [2 ]
Miura, Takao [1 ]
机构
[1] Hosei Univ, Dept Elect & Elect Engn, Tokyo, Japan
[2] Hosei Univ, Res Ctr Micronano Technol, Tokyo, Japan
关键词
D O I
10.1109/WI-IAT.2012.207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we discuss Query-Topic Sensitive Ranking algorithm, called Topic-Driven PageRank (TDPR), to inquire general documents based on a notion of importance. The main idea is that we extract knowledge from training data for multiple classification and build characteristic feature for each topic. By this approach, we get documents reflecting queries and topics within so that we can improve query results and to avoid topicdrift problems.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [31] Quantifying Query Ambiguity with Topic Distributions
    Yano, Yuki
    Tagami, Yukihiro
    Tajima, Akira
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1877 - 1880
  • [32] Unique Topic Query Processing On Cloud
    Liu, Lvhong
    Yang, Zhihui
    He, Zhenying
    Jing, Yinan
    Wang, Xiaoyang Sean
    2018 5TH IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (IEEE CSCLOUD 2018) / 2018 4TH IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND SCALABLE CLOUD (IEEE EDGECOM 2018), 2018, : 103 - 105
  • [33] A Query-Driven Topic Model
    Fang, Zheng
    He, Yulan
    Procter, Rob
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1764 - 1777
  • [34] Topic (Query) Selection for IR Evaluation
    Zhu, Jianhan
    Wang, Jun
    Cox, Ingemar
    Vinay, Vishwa
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 802 - 803
  • [35] Depth estimation for ranking query optimization
    Schnaitter, Karl
    Spiegel, Joshua
    Polyzotis, Neoklis
    VLDB JOURNAL, 2009, 18 (02): : 521 - 542
  • [36] Depth estimation for ranking query optimization
    Karl Schnaitter
    Joshua Spiegel
    Neoklis Polyzotis
    The VLDB Journal, 2009, 18 : 521 - 542
  • [37] RankTopic: Ranking Based Topic Modeling
    Duan, Dongsheng
    Li, Yuhua
    Li, Ruixuan
    Zhang, Rui
    Wen, Aiming
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 211 - 220
  • [38] Topic detection and ranking in Web community
    Chen, Shengshuang
    Wen, Lijuan
    Yu, Wei
    Journal of Information and Computational Science, 2010, 7 (02): : 471 - 478
  • [39] Ranking Answers by Hierarchical Topic Models
    Qin, Zengchang
    Thint, Marcus
    Huang, Zhiheng
    NEXT-GENERATION APPLIED INTELLIGENCE, PROCEEDINGS, 2009, 5579 : 103 - +
  • [40] Topic Difficulty Prediction in Entity Ranking
    Vercoustre, Anne-Marie
    Pehcevski, Jovan
    Naumovski, Vladimir
    ADVANCES IN FOCUSED RETRIEVAL, 2009, 5631 : 280 - +