Confidence bands for least squares support vector machine classifiers: A regression approach

被引:17
|
作者
De Brabanter, K. [1 ]
Karsmakers, P. [1 ,2 ]
De Brabanter, J. [1 ,3 ,4 ]
Suykens, J. A. K. [1 ,4 ]
De Moor, B. [1 ,4 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, B-3001 Louvain, Belgium
[2] KH Kempen Associatie KU Leuven, Dept IBW, B-2440 Geel, Belgium
[3] Katholieke Univ Leuven, Hogesch KaHo Sint Lieven, Dept E&A 11, B-9000 Ghent, Belgium
[4] IBBT KU Leuven Future Hlth Dept, B-3001 Louvain, Belgium
关键词
Kernel based classification; Bias; Variance; Linear smoother; Higher-order kernel; Simultaneous confidence intervals;
D O I
10.1016/j.patcog.2011.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents bias-corrected 100(1-alpha)% simultaneous confidence bands for least squares support vector machine classifiers based on a regression framework. The bias, which is inherently present in every nonparametric method, is estimated using double smoothing. In order to obtain simultaneous confidence bands we make use of the volume-of-tube formula. We also provide extensions of this formula in higher dimensions and show that the width of the bands are expanding with increasing dimensionality. Simulations and data analysis support its usefulness in practical real life classification problems. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2280 / 2287
页数:8
相关论文
共 50 条
  • [41] A robust weighted least squares support vector regression based on least trimmed squares
    Chen, Chuanfa
    Yan, Changqing
    Li, Yanyan
    [J]. NEUROCOMPUTING, 2015, 168 : 941 - 946
  • [42] Confidence and prediction intervals for semiparametric mixed-effect least squares support vector machine
    Cheng, Qiang
    Tezcan, Jale
    Cheng, Jie
    [J]. PATTERN RECOGNITION LETTERS, 2014, 40 : 88 - 95
  • [43] Diagnosis of Liver Disease by Using Least Squares Support Vector Machine Approach
    Singh, Aman
    Pandey, Babita
    [J]. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2016, 11 (02) : 62 - 75
  • [44] The application of least squares support vector machine for classification
    Liu, Bo
    Hao, Zhifeng
    Yang, Xiaowei
    [J]. ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 265 - 268
  • [45] Density Weighted Least Squares Support Vector Machine
    Xu Shuqiong
    Yuan Conggui
    Zhang Xinzheng
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 5310 - 5314
  • [46] A Fast Least Squares Support Vector Machine Classifier
    Kong, Rui
    Zhang, Bing
    [J]. 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 749 - 752
  • [47] A Novel Kernel for Least Squares Support Vector Machine
    冯伟
    赵永平
    杜忠华
    李德才
    王立峰
    [J]. Defence Technology, 2012, 8 (04) : 240 - 247
  • [48] A Weighted Least Squares Twin Support Vector Machine
    Xu, Yitian
    Lv, Xin
    Wang, Zheng
    Wang, Laisheng
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2014, 30 (06) : 1773 - 1787
  • [49] A sparse least squares support vector machine classifier
    Valyon, J
    Horváth, G
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 543 - 548
  • [50] Algorithm of Sparse Least Squares Support Vector Machine
    Zhang, Yongli
    Zhu, Yanwei
    Lin, Shufei
    Sun, Xiujuan
    Zhang, Qiuna
    Liu, Xiaohong
    [J]. SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2011, 143-144 : 1229 - +