Confidence bands for least squares support vector machine classifiers: A regression approach

被引:17
|
作者
De Brabanter, K. [1 ]
Karsmakers, P. [1 ,2 ]
De Brabanter, J. [1 ,3 ,4 ]
Suykens, J. A. K. [1 ,4 ]
De Moor, B. [1 ,4 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, B-3001 Louvain, Belgium
[2] KH Kempen Associatie KU Leuven, Dept IBW, B-2440 Geel, Belgium
[3] Katholieke Univ Leuven, Hogesch KaHo Sint Lieven, Dept E&A 11, B-9000 Ghent, Belgium
[4] IBBT KU Leuven Future Hlth Dept, B-3001 Louvain, Belgium
关键词
Kernel based classification; Bias; Variance; Linear smoother; Higher-order kernel; Simultaneous confidence intervals;
D O I
10.1016/j.patcog.2011.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents bias-corrected 100(1-alpha)% simultaneous confidence bands for least squares support vector machine classifiers based on a regression framework. The bias, which is inherently present in every nonparametric method, is estimated using double smoothing. In order to obtain simultaneous confidence bands we make use of the volume-of-tube formula. We also provide extensions of this formula in higher dimensions and show that the width of the bands are expanding with increasing dimensionality. Simulations and data analysis support its usefulness in practical real life classification problems. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2280 / 2287
页数:8
相关论文
共 50 条
  • [1] Least squares support vector machine classifiers
    Suykens, JAK
    Vandewalle, J
    [J]. NEURAL PROCESSING LETTERS, 1999, 9 (03) : 293 - 300
  • [2] Least Squares Support Vector Machine Classifiers
    J.A.K. Suykens
    J. Vandewalle
    [J]. Neural Processing Letters, 1999, 9 : 293 - 300
  • [3] Benchmarking least squares support vector machine classifiers
    van Gestel, T
    Suykens, JAK
    Baesens, B
    Viaene, S
    Vanthienen, J
    Dedene, G
    de Moor, B
    Vandewalle, J
    [J]. MACHINE LEARNING, 2004, 54 (01) : 5 - 32
  • [4] Asymmetric least squares support vector machine classifiers
    Huang, Xiaolin
    Shi, Lei
    Suykens, Johan A. K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 395 - 405
  • [5] Benchmarking Least Squares Support Vector Machine Classifiers
    Tony van Gestel
    Johan A.K. Suykens
    Bart Baesens
    Stijn Viaene
    Jan Vanthienen
    Guido Dedene
    Bart de Moor
    Joos Vandewalle
    [J]. Machine Learning, 2004, 54 : 5 - 32
  • [6] Least Squares Support Vector Machine Classifiers Using PCNNs
    Sang, Yongsheng
    Zhang, Haixian
    Zuo, Lin
    [J]. 2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 828 - 833
  • [7] Bankruptcy prediction with Least Squares Support Vector Machine Classifiers
    Van Gestel, T
    Baesens, B
    Suykens, J
    Espinoza, M
    Baestaens, DE
    Vanthienen, J
    De Moor, B
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS, 2003, : 1 - 8
  • [8] Mapped least squares support vector machine regression
    Zheng, S
    Sun, YQ
    Tian, JW
    Liu, J
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (03) : 459 - 475
  • [9] Improved sparse least-squares support vector machine classifiers
    Li, Yuangui
    Lin, Chen
    Zhang, Weidong
    [J]. NEUROCOMPUTING, 2006, 69 (13-15) : 1655 - 1658
  • [10] Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression
    De Brabanter, Kris
    De Brabanter, Jos
    Suykens, Johan A. K.
    De Moor, Bart
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (01): : 110 - 120