PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS

被引:21
|
作者
Arakawa, Tomoyuki [1 ]
Lam, Ching Hung [2 ]
Yamada, Hiromichi [3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Acad Sinica, Inst Math, Taipei 115, Taiwan
[3] Hitotsubashi Univ, Dept Math, Kunitachi, Tokyo 1868601, Japan
关键词
AFFINE; REPRESENTATIONS; DIMENSIONS; SYMMETRY; LEVEL;
D O I
10.1090/tran/7547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjectural isomorphism between the level k (sl(2)) over cap -parafermion vertex operator algebra and the (k + 1, k + 2)-minimal series W-k-algebra for all k >= 2. As a consequence, we obtain the conjectural isomorphism between the (k + 1, k + 2)-minimal series W-k-algebra and the coset vertex operator algebra SU(k)(1) circle times SU(k)(1)/SU(k)(2).
引用
收藏
页码:4277 / 4301
页数:25
相关论文
共 50 条
  • [1] W-algebras related to parafermion algebras
    Dong, Chongying
    Lam, Ching Hung
    Yamada, Hiromichi
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (07) : 2366 - 2403
  • [2] Parafermion vertex operator algebras
    Chongying Dong
    Qing Wang
    [J]. Frontiers of Mathematics in China, 2011, 6 : 567 - 579
  • [3] Parafermion vertex operator algebras
    Dong, Chongying
    Wang, Qing
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 567 - 579
  • [4] Coset vertex operator algebras and W-algebras of A-type
    Tomoyuki Arakawa
    Cuipo Jiang
    [J]. Science China Mathematics, 2018, 61 (02) : 191 - 206
  • [5] Coset vertex operator algebras and W-algebras of A-type
    Arakawa, Tomoyuki
    Jiang, Cuipo
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (02) : 191 - 206
  • [6] Coset vertex operator algebras and W-algebras of A-type
    Tomoyuki Arakawa
    Cuipo Jiang
    [J]. Science China Mathematics, 2018, 61 : 191 - 206
  • [7] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    [J]. INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [8] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    [J]. Inventiones mathematicae, 2019, 218 : 145 - 195
  • [9] Representations of the parafermion vertex operator algebras
    Dong, Chongying
    Ren, Li
    [J]. ADVANCES IN MATHEMATICS, 2017, 315 : 88 - 101
  • [10] The structure of parafermion vertex operator algebras
    Dong, Chongying
    Lam, Ching Hung
    Wang, Qing
    Yamada, Hiromichi
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (02) : 371 - 381