h-multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

被引:19
|
作者
Klaij, C. M. [1 ]
van Raalte, M. H. [2 ]
van der Ven, H. [3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
[3] Natl Aerosp Lab NLR, NL-1600 BM Amsterdam, Netherlands
关键词
space-time discontinuous Galerkin method; pseudo-time stepping methods; multigrid; two-level fourier analysis;
D O I
10.1016/j.jcp.2007.08.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier-Stokes equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance, therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a h-multigrid method using explicit Runge-Kutta relaxation. Two-level Fourier analysis of this method for the scalar advection-diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D compressible Navier-Stokes equations where numerical experiments show that the computational effort is significantly reduced, up to a factor 10 w.r.t. single-grid iterations. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1024 / 1045
页数:22
相关论文
共 50 条
  • [21] Adaptive local discontinuous Galerkin methods with semi-implicit time discretizations for the Navier-Stokes equations
    Meng, Xiangyi
    Xu, Yan
    [J]. ADVANCES IN AERODYNAMICS, 2022, 4 (01)
  • [22] An immersed discontinuous Galerkin method for compressible Navier-Stokes equations on unstructured meshes
    Xiao, Hong
    Febrianto, Eky
    Zhang, Qiaoling
    Cirak, Fehmi
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 91 (10) : 487 - 508
  • [23] AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Williams, D. M.
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 95 - 121
  • [24] A discontinuous Galerkin method for the Navier-Stokes equations
    Lomtev, I
    Karniadakis, GE
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (05) : 587 - 603
  • [25] A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids
    Cheng, Jian
    Yang, Xiaoquan
    Liu, Xiaodong
    Liu, Tiegang
    Luo, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 484 - 502
  • [26] Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (1-2) : 197 - 207
  • [27] A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids
    Luo, Hong
    Luo, Luqing
    Nourgaliev, Robert
    Mousseau, Vincent A.
    Dinh, Nam
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6961 - 6978
  • [28] A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations
    F. L. Romeo
    M. Dumbser
    M. Tavelli
    [J]. Communications on Applied Mathematics and Computation, 2021, 3 : 607 - 647
  • [29] A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations
    Romeo, F. L.
    Dumbser, M.
    Tavelli, M.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (04) : 607 - 647
  • [30] Pointwise space-time estimates for compressible Navier-Stokes equations for a reacting mixture
    Wang, Wenjun
    Wu, Zhigang
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (02):