h-multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

被引:19
|
作者
Klaij, C. M. [1 ]
van Raalte, M. H. [2 ]
van der Ven, H. [3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[2] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
[3] Natl Aerosp Lab NLR, NL-1600 BM Amsterdam, Netherlands
关键词
space-time discontinuous Galerkin method; pseudo-time stepping methods; multigrid; two-level fourier analysis;
D O I
10.1016/j.jcp.2007.08.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier-Stokes equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance, therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a h-multigrid method using explicit Runge-Kutta relaxation. Two-level Fourier analysis of this method for the scalar advection-diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D compressible Navier-Stokes equations where numerical experiments show that the computational effort is significantly reduced, up to a factor 10 w.r.t. single-grid iterations. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1024 / 1045
页数:22
相关论文
共 50 条
  • [1] Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations
    Klaij, C. M.
    van der Vegt, J. J. W.
    van der Ven, H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) : 589 - 611
  • [2] Pseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Klaij, C. M.
    van der Vegt, J. J. W.
    van der Ven, H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) : 622 - 643
  • [3] Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Oliver, Todd A.
    Fidkowski, Krzysztof J.
    Darmofal, David L.
    [J]. COMPUTATIONAL FLUID DYNAMICS 2004, PROCEEDINGS, 2006, : 455 - +
  • [4] Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Shahbazi, Khosro
    Mavriplis, Dimitri J.
    Burgess, Nicholas K.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) : 7917 - 7940
  • [5] p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Fidkowski, KJ
    Oliver, TA
    Lu, J
    Darmofal, DL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 207 (01) : 92 - 113
  • [6] A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Rhebergen, Sander
    Cockburn, Bernardo
    van der Vegt, Jaap J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 339 - 358
  • [7] Discontinuous Galerkin schemes for the compressible Navier-Stokes equations
    Drozo, C
    Borrel, M
    Lerat, A
    [J]. SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 266 - 271
  • [8] GMRES Discontinuous Galerkin solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 197 - 208
  • [9] A MULTILEVEL DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Prill, F.
    Lukacova-Medvidova, M.
    Hartmann, R.
    [J]. ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 91 - 100
  • [10] Higher-order discontinuous Galerkin time discretizations for the evolutionary Navier-Stokes equations
    Ahmed, Naveed
    Matthies, Gunar
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3113 - 3144