Recommender systems based on user reviews: the state of the art

被引:235
|
作者
Chen, Li [1 ]
Chen, Guanliang [1 ]
Wang, Feng [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
关键词
Recommender systems; User reviews; Text analysis; Opinion mining; User profile building; Product profile building; Content-based recommending; Collaborative filtering; Preference-based product ranking; SIMILARITY;
D O I
10.1007/s11257-015-9155-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, a variety of review-based recommender systems have been developed, with the goal of incorporating the valuable information in user-generated textual reviews into the user modeling and recommending process. Advanced text analysis and opinion mining techniques enable the extraction of various types of review elements, such as the discussed topics, the multi-faceted nature of opinions, contextual information, comparative opinions, and reviewers' emotions. In this article, we provide a comprehensive overview of how the review elements have been exploited to improve standard content-based recommending, collaborative filtering, and preference-based product ranking techniques. The review-based recommender system's ability to alleviate the well-known rating sparsity and cold-start problems is emphasized. This survey classifies state-of-the-art studies into two principal branches: review-based user profile building and review-based product profile building. In the user profile sub-branch, the reviews are not only used to create term-based profiles, but also to infer or enhance ratings. Multi-faceted opinions can further be exploited to derive the weight/value preferences that users place on particular features. In another sub-branch, the product profile can be enriched with feature opinions or comparative opinions to better reflect its assessment quality. The merit of each branch of work is discussed in terms of both algorithm development and the way in which the proposed algorithms are evaluated. In addition, we discuss several future trends based on the survey, which may inspire investigators to pursue additional studies in this area.
引用
收藏
页码:99 / 154
页数:56
相关论文
共 50 条
  • [41] A state-of-the-art Recommender Systems: an overview on Concepts, Methodology and Challenges
    Jariha, Priyanka
    Jain, Sanjay Kumar
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1769 - 1774
  • [42] Tag-Aware Recommender Systems:A State-of-the-Art Survey
    张子柯
    周涛
    张翼成
    Journal of Computer Science & Technology, 2011, 26 (05) : 767 - 777
  • [43] An overview of video recommender systems: state-of-the-art and research issues
    Lubos, Sebastian
    Felfernig, Alexander
    Tautschnig, Markus
    FRONTIERS IN BIG DATA, 2023, 6
  • [44] Recommender systems in the healthcare domain: state-of-the-art and research issues
    Tran, Thi Ngoc Trang
    Felfernig, Alexander
    Trattner, Christoph
    Holzinger, Andreas
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2021, 57 (01) : 171 - 201
  • [45] Tag-Aware Recommender Systems: A State-of-the-Art Survey
    Zi-Ke Zhang
    Tao Zhou
    Yi-Cheng Zhang
    Journal of Computer Science and Technology, 2011, 26 : 767 - 777
  • [46] Tag-Aware Recommender Systems: A State-of-the-Art Survey
    Zhang, Zi-Ke
    Zhou, Tao
    Zhang, Yi-Cheng
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2011, 26 (05) : 767 - 777
  • [47] Recommender systems in the healthcare domain: state-of-the-art and research issues
    Thi Ngoc Trang Tran
    Alexander Felfernig
    Christoph Trattner
    Andreas Holzinger
    Journal of Intelligent Information Systems, 2021, 57 : 171 - 201
  • [48] Recommender Systems, Autonomy and User Engagement
    Krook, Joshua
    Blockx, Jan
    FIRST INTERNATIONAL SYMPOSIUM ON TRUSTWORTHY AUTONOMOUS SYSTEMS, TAS 2023, 2022,
  • [49] Modeling User Networks in Recommender Systems
    Vogiatzis, Dimitrios
    Tsapatsoulis, Nicolas
    THIRD INTERNATIONAL WORKSHOP ON SEMANTIC MEDIA ADAPTATION AND PERSONALIZATION, PROCEEDINGS, 2008, : 106 - +
  • [50] Multicriteria User Modeling in Recommender Systems
    Lakiotaki, Kleanthi
    Matsatsinis, Nikolaos F.
    Tsoukias, Alexis
    IEEE INTELLIGENT SYSTEMS, 2011, 26 (02) : 64 - 76